Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2692: 275-287, 2023.
Article in English | MEDLINE | ID: mdl-37365475

ABSTRACT

Phagosomal pattern recognition receptor signaling promotes phagosome maturation and additional immune pathways such as proinflammatory cytokine secretion and antigen MHC-II presentation in antigen-presenting cells. In the present chapter, we describe procedures to assess these pathways in murine dendritic cells, professional phagocytes positioned at the interface between innate and adaptive immune responses. The assays described herein follow proinflammatory signaling by biochemical and immunological assays as well as antigen presentation of the model antigen Eα by immunofluorescence followed by flow cytometry.


Subject(s)
Antigen Presentation , Phagocytosis , Mice , Animals , Phagosomes/metabolism , Receptors, Pattern Recognition/metabolism , Dendritic Cells
2.
Front Immunol ; 11: 545414, 2020.
Article in English | MEDLINE | ID: mdl-33162974

ABSTRACT

Neonatal hemophagocytic lymphohistiocytosis (HLH) is a medical emergency that can be associated with significant morbidity and mortality. Often these patients present with familial HLH (f-HLH), which is caused by gene mutations interfering with the cytolytic pathway of cytotoxic T-lymphocytes (CTLs) and natural killer cells. Here we describe a male newborn who met the HLH diagnostic criteria, presented with profound cholestasis, and carried a maternally inherited heterozygous mutation in syntaxin-binding protein-2 [STXBP2, c.568C>T (p.Arg190Cys)] in addition to a severe pathogenic variant in glucose 6-phosphate dehydrogenase [G6PD, hemizygous c.1153T>C (Cys385Arg)]. Although mutations in STXBP2 gene are associated with f-HLH type 5, the clinical and biological relevance of the p.Arg190Cys mutation identified in this patient was uncertain. To assess its role in disease pathogenesis, we performed functional assays and biochemical and microscopic studies. We found that p.Arg190Cys mutation did not alter the expression or subcellular localization of STXBP2 or STX11, neither impaired the STXBP2/STX11 interaction. In contrast, forced expression of the mutated protein into normal CTLs strongly inhibited degranulation and reduced the cytolytic activity outcompeting the effect of endogenous wild-type STXBP2. Interestingly, arginine 190 is located in a structurally conserved region of STXBP2 where other f-HLH-5 mutations have been identified. Collectively, data strongly suggest that STXBP2-R190C is a deleterious variant that may act in a dominant-negative manner by probably stabilizing non-productive interactions between STXBP2/STX11 complex and other still unknown factors such as the membrane surface or Munc13-4 protein and thus impairing the release of cytolytic granules. In addition to the contribution of STXBP2-R190C to f-HLH, the accompanied G6PD mutation may have compounded the clinical symptoms; however, the extent by which G6PD deficiency has contributed to HLH in our patient remains unclear.


Subject(s)
Exocytosis/genetics , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , Munc18 Proteins/genetics , Mutation , Alleles , Amino Acid Sequence , Amino Acid Substitution , Apoptosis/genetics , Apoptosis/immunology , Biomarkers , Cytotoxicity, Immunologic , Disease Susceptibility , Gene Expression , Genetic Association Studies , Glucosephosphate Dehydrogenase Deficiency/complications , Humans , Infant, Newborn , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphohistiocytosis, Hemophagocytic/complications , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Munc18 Proteins/chemistry , Munc18 Proteins/metabolism , Protein Conformation , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Structure-Activity Relationship , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
3.
Cell Microbiol ; 21(2): e12990, 2019 02.
Article in English | MEDLINE | ID: mdl-30537301

ABSTRACT

Leptospirosis is a global zoonosis caused by pathogenic Leptospira. Neutrophils are key cells against bacterial pathogens but can also contribute to tissue damage. Because the information regarding the role of human neutrophils in leptospirosis is scant, we comparatively analysed the human neutrophil's response to saprophytic Leptospira biflexa serovar Patoc (Patoc) and the pathogenic Leptospira interrogans serovar Copenhageni (LIC). Both species triggered neutrophil responses involved in migration, including the upregulation of CD11b expression, adhesion to collagen, and the release of IL-8. In addition, both species increased levels of pro-inflammatory IL-1ß and IL-6 associated with the inflammasome and NFκB pathway activation and delayed neutrophil apoptosis. LIC was observed on the neutrophil surface and not phagocytized. In contrast, Patoc generated intracellular ROS associated with its uptake. Neutrophils express the TYRO3, AXL, and MER receptor protein tyrosine kinases (TAM), but only LIC selectively increased the level of AXL. TLR2 but not TLR4-blocking antibodies abrogated the IL-8 secretion triggered by both Leptospira species. In summary, we demonstrate that Leptospira species trigger a robust neutrophil activation and pro-inflammatory response. These findings may be useful to find new diagnostic markers and therapeutic strategies against leptospirosis.


Subject(s)
Leptospira/immunology , Leptospirosis/immunology , Leptospirosis/pathology , Neutrophil Activation/immunology , Neutrophils/immunology , CD11b Antigen/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Leptospira interrogans/immunology , Leptospirosis/microbiology
4.
Article in English | MEDLINE | ID: mdl-30425972

ABSTRACT

Previous studies have suggested that macrophages may contribute to acute Leptospira dissemination, as well as having a major role in kidney fibrosis. Our aim was to characterize the role of macrophages and galectin 3 (Gal-3) on the survival, clinical course, bacterial burden, interstitial nephritis, and chronic kidney fibrosis in Leptospira interrogans serovar Copenhageni (LIC)-induced experimental murine leptospirosis. C57BL/6J mice depleted of macrophages by liposome-encapsulated clodronate treatment and infected with LIC presented a higher bacterial burden, had reduced subacute nephritis and enhanced chronic kidney fibrosis relative to untreated, infected mice. Moreover, LIC infection in mice whose Gal-3 was disrupted (Lgals3-/-) had a higher bacterial burden and enhanced subacute nephritis and chronic kidney fibrosis when compared to C57BL/6J wild-type mice. Chronic fibrosis did not correlate with higher transcription levels of TGF-ß1 or IL-13 in the kidneys. Kidney fibrosis was found in chronically infected rats as well as in wild infected rats. On the other hand, human fibroblast cultures exhibited enhanced differentiation to myofibroblasts after treatment with LIC. Our results demonstrate that macrophages and Gal-3 play a critical role in controlling the LIC burden but has a minor role in subsequent fibrosis. Instead, kidney fibrosis was better correlated with bacterial burden. Taken together, our results do not support a role for macrophages to disseminate leptospires during acute infection, nor in chronic kidney fibrosis.


Subject(s)
Bacterial Load , Fibrosis/pathology , Galectin 3/metabolism , Kidney Diseases/pathology , Leptospira interrogans/pathogenicity , Leptospirosis/pathology , Macrophages/immunology , Animals , Cells, Cultured , Disease Models, Animal , Fibrosis/microbiology , Humans , Kidney Diseases/microbiology , Leptospira interrogans/isolation & purification , Leptospirosis/microbiology , Mice, Inbred C57BL , Rats
5.
PLoS One ; 12(1): e0169936, 2017.
Article in English | MEDLINE | ID: mdl-28095485

ABSTRACT

B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts.


Subject(s)
Antibodies, Bacterial/immunology , Bordetella Infections/immunology , Bordetella parapertussis/growth & development , Extracellular Traps/immunology , Neutrophils/immunology , Bordetella Infections/microbiology , Bordetella parapertussis/immunology , Bordetella parapertussis/pathogenicity , Extracellular Traps/microbiology , Humans , Macrophages/immunology , Macrophages/microbiology , Membrane Microdomains , Neutrophils/microbiology , Phagocytosis/immunology , Phagosomes/immunology
6.
PLoS Negl Trop Dis ; 9(7): e0003927, 2015.
Article in English | MEDLINE | ID: mdl-26161745

ABSTRACT

NETosis is a process by which neutrophils extrude their DNA together with bactericidal proteins that trap and/or kill pathogens. In the present study, we evaluated the ability of Leptospira spp. to induce NETosis using human ex vivo and murine in vivo models. Microscopy and fluorometric studies showed that incubation of human neutrophils with Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 (LIC) resulted in the release of DNA extracellular traps (NETs). The bacteria number, pathogenicity and viability were relevant factors for induction of NETs, but bacteria motility was not. Entrapment of LIC in the NETs resulted in LIC death; however, pathogenic but not saprophytic Leptospira sp. exerted nuclease activity and degraded DNA. Mice infected with LIC showed circulating NETs after 2 days post-infection (dpi). Depletion of neutrophils with mAb1A8 significantly reduced the amount of intravascular NETs in LIC-infected mice, increasing bacteremia at 3 dpi. Although there was a low bacterial burden, scarce neutrophils and an absence of inflammation in the early stages of infection in the kidney and liver, at the beginning of the leptospiruric phase, the bacterial burden was significantly higher in kidneys of neutrophil-depleted-mice compared to non-depleted and infected mice. Surprisingly, interstitial nephritis was of similar intensity in both groups of infected mice. Taken together, these data suggest that LIC triggers NETs, and that the intravascular formation of these DNA traps appears to be critical not only to prevent early leptospiral dissemination but also to preclude further bacterial burden.


Subject(s)
Extracellular Traps/immunology , Leptospira/physiology , Leptospirosis/immunology , Neutrophils/immunology , Animals , Humans , Immunity, Innate , Leptospira/immunology , Leptospirosis/microbiology , Male , Mice , Mice, Inbred C57BL , Neutrophils/microbiology
7.
PLoS One ; 9(7): e102860, 2014.
Article in English | MEDLINE | ID: mdl-25032961

ABSTRACT

Leptospirosis is a global zoonosis caused by pathogenic Leptospira, which can colonize the proximal renal tubules and persist for long periods in the kidneys of infected hosts. Here, we characterized the infection of C57BL/6J wild-type and Daf1-/- mice, which have an enhanced host response, with a virulent Leptospira interrogans strain at 14 days post-infection, its persistence in the kidney, and its link to kidney fibrosis at 90 days post-infection. We found that Leptospira interrogans can induce acute moderate nephritis in wild-type mice and is able to persist in some animals, inducing fibrosis in the absence of mortality. In contrast, Daf1-/- mice showed acute mortality, with a higher bacterial burden. At the chronic stage, Daf1-/- mice showed greater inflammation and fibrosis than at 14 days post-infection and higher levels at all times than the wild-type counterpart. Compared with uninfected mice, infected wild-type mice showed higher levels of IL-4, IL-10 and IL-13, with similar levels of α-smooth muscle actin, galectin-3, TGF-ß1, IL-17, IFN-γ, and lower IL-12 levels at 90 days post-infection. In contrast, fibrosis in Daf1-/- mice was accompanied by high expression of α-smooth muscle actin, galectin-3, IL-10, IL-13, and IFN-γ, similar levels of TGF-ß1, IL-12, and IL-17 and lower IL-4 levels. This study demonstrates the link between Leptospira-induced murine chronic nephritis with renal fibrosis and shows a protective role of Daf1.


Subject(s)
CD55 Antigens/metabolism , Fibrosis/metabolism , Kidney Diseases/metabolism , Kidney Tubules, Proximal/metabolism , Leptospirosis/metabolism , Nephritis/metabolism , Actins/metabolism , Animals , Fibrosis/microbiology , Galectin 3/metabolism , Inflammation/metabolism , Inflammation/microbiology , Interferon-gamma/metabolism , Interleukins/metabolism , Kidney Diseases/microbiology , Kidney Tubules, Proximal/microbiology , Leptospira interrogans , Leptospirosis/microbiology , Mice , Mice, Inbred C57BL , Nephritis/mortality , Transforming Growth Factor beta1/metabolism
8.
Neurosci Lett ; 501(3): 163-6, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21782004

ABSTRACT

Argentine haemorrhagic fever (AHF) is a systemic febrile syndrome characterized by several haematological and neurological alterations caused by Junín virus (JUNV), a member of the Arenaviridae family. Newborn mice are highly susceptible to JUNV and the course of infection has been associated with the viral strain used. Galectin-3 (Gal-3) is an animal lectin that has been proposed to play an important role in some central nervous system (CNS) diseases. In this study, we analysed Gal-3 expression at the transcriptional and translational expression levels during JUNV-induced CNS disease. We found that Candid 1 strain induced, with relatively low mortality, a subacute/chronic CNS disease with significant glia activation and upregulation of Gal-3 in microglia cells as well as in reactive astrocytes that correlated with viral levels. Our results suggest an important role for Gal-3 in viral-induced CNS disease.


Subject(s)
Arenaviridae Infections/metabolism , Encephalitis, Viral/metabolism , Galectin 3/biosynthesis , Junin virus/pathogenicity , Neuroglia/metabolism , Neuroglia/virology , Up-Regulation/physiology , Animals , Animals, Newborn , Arenaviridae Infections/pathology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/virology , Disease Models, Animal , Encephalitis, Viral/pathology , Hemorrhagic Fever, American/metabolism , Hemorrhagic Fever, American/pathology , Hemorrhagic Fever, American/virology , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Microglia/virology , Neuroglia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...