Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 98(3): 1685-96, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17596420

ABSTRACT

A key element of walking is the coordinated interplay of multiple limbs to achieve a stable locomotor pattern that is adapted to the environment. We investigated intersegmental coordination of walking in the stick insect, Carausius morosus by examining the influence a single stepping leg has on the motoneural activity of the other hemiganglia, and whether this influence changes with the walking direction. We used a reduced single leg walking preparation with only one intact front, middle, or hind leg. The intact leg performed stepping movements on a treadmill, thus providing intersegmental signals about its stepping to the other hemiganglia. The activity of coxal motoneurons was simultaneously recorded extracellularly in all other segments. Stepping sequences of any given single leg in either walking direction were accompanied by an increase in coxal motoneuron (MN) activity of all other segments, which was mostly modulated and slightly in phase with stance of the walking leg. In addition, forward stepping of the front leg and, to a lesser extent, backward stepping of the hind leg elicited alternating activity in mesothoracic coxal MNs. Forward and backward stepping of the middle leg did not elicit alternating activity in coxal MNs in any other hemiganglia, indicating that the influence of middle leg stepping is qualitatively different from that of forward front and backward hind leg stepping. Our results indicate that in an insect walking system individual segments differ with respect to their intersegmental influences and thus cannot be treated as similar within the chain of segmental walking pattern generators. Consequences for the current concepts on intersegmental coordination are discussed.


Subject(s)
Extremities/physiology , Orthoptera/physiology , Walking/physiology , Animals , Forelimb , Hindlimb , Kinetics , Motor Activity , Psychomotor Performance , Thorax/physiology
2.
J Exp Biol ; 210(Pt 6): 1092-108, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17337721

ABSTRACT

We investigated the properties of the extensor tibiae muscle of the stick insect (Carausius morosus) middle leg. Muscle geometry of the middle leg was compared to that of the front and hind legs and to the flexor tibiae, respectively. The mean length of the extensor tibiae fibres is 1.41+/-0.23 mm and flexor fibres are 2.11+/-0.30 mm long. The change of fibre length with joint angle was measured and closely follows a cosine function. Its amplitude gives effective moment arm lengths of 0.28+/-0.02 mm for the extensor and 0.56+/-0.04 mm for the flexor. Resting extensor tibiae muscle passive tonic force increased from 2 to 5 mN in the maximum femur-tibia (FT)-joint working range when stretched by ramps. Active muscle properties were measured with simultaneous activation (up to 200 pulses s(-1)) of all three motoneurons innervating the extensor tibiae, because this reflects most closely physiological muscle activation during leg swing. The force-length relationship corresponds closely to the typical characteristic according to the sliding filament hypothesis: it has a plateau at medium fibre lengths, declines nearly linearly in force at both longer and shorter fibre lengths, and the muscle's working range lies in the short to medium fibre length range. Maximum contraction velocity showed a similar relationship. The force-velocity relationship was the traditional Hill curve hyperbola, but deviated from the hyperbolic shape in the region of maximum contraction force close to the isometric contraction. Step-like changes in muscle length induced by loaded release experiments characterised the non-linear series elasticity as a quadratic spring.


Subject(s)
Insecta/physiology , Lower Extremity/physiology , Motor Activity/physiology , Muscle, Skeletal/physiology , Animals , Elasticity , Female , Isometric Contraction , Kinetics , Models, Biological , Muscle Fibers, Skeletal/physiology , Time Factors , Weight-Bearing
3.
J Neurosci Methods ; 158(2): 195-206, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-16824615

ABSTRACT

A modified and improved setup based on Epstein and Graham [Epstein S, Graham D. Behaviour and motor output of stick insects walking on a slippery surface. I. Forward walking. J Exp Biol 1983;105: 215-29] to study straight and curve walking in the stick insect was developed and applications for its use are described. The animal is fixed on a balsa stick and walks freely on a slippery surface created with a thin film of a glycerin/water solution on a black, Ni-coated, polished brass plate. The glycerine/water ratio controls the viscosity of the lubricant and thereby the forces necessary to move the legs of the stick insect. A small amount of NaCl is added to ensure electric conductivity. Walking is induced through an optomotor stimulus given by two stripe-projectors producing rotatory and translatory stimuli to influence walking direction. The walking pattern is monitored in two ways: (1) tarsal contact with the slippery surface is measured electrically using a lock-in-amplifier. The tarsal contact signal allows correlation with the activity in different muscles of the stick insect leg recorded with EMG electrodes; (2) leg kinematics in the horizontal plane is monitored using synchronized high speed video. This setup allows us to determine the coupling of activity in different leg muscles to either swing or stance phase during straight and curve walking in the intact animal or the reduced single-leg preparation with a high time resolution.


Subject(s)
Extremities/physiology , Insecta/physiology , Walking/physiology , Animals , Electric Stimulation , Electromyography , Female , In Vitro Techniques , Motor Neurons/physiology , Muscles/innervation , Muscles/physiology , Orientation/physiology , Photic Stimulation , Surface Properties , Video Recording
4.
J Neurobiol ; 56(3): 237-51, 2003 Sep 05.
Article in English | MEDLINE | ID: mdl-12884263

ABSTRACT

In the present study, motoneurons innervating the flexor tibiae muscle of the stick insect (Cuniculina impigra) middle leg were recorded intracellularly while the single leg performed walking-like movements on a treadwheel. Different levels of belt friction (equivalent to a change in load) were used to study the control of activity of flexor motoneurons. During slow leg movements no fast motoneurons were active, but a recruitment of these neurons could be observed during faster leg movements. The firing rate of slow and fast motoneurons increased with incremented belt friction. Also, the force applied to the treadwheel at different frictional levels was adapted closely to the friction of the treadwheel to be overcome. The motoneurons innervating the flexor tibiae were recruited progressively during the stance phase, with the slow motoneurons being active earlier than the fast (half-maximal spike frequency after 10-15% and 50-60% of the stance phase, respectively). The resting membrane potential was more hyperpolarized in fast motoneurons (64.6 +/- 6.5 mV) than in slow motoneurons (-52.9 +/- 5.4 mV). However, the threshold for the initiation of action potentials was not statistically significantly different in both types of flexor motoneurons. Therefore, action potentials were generated in fast motoneurons after a longer period of depolarization and thus later during the stance phase than in slow motoneurons. We show that motoneurons of the flexor tibiae receive substantial common excitatory inputs during the stance phase and that the difference in resting membrane potential between slow and fast motoneurons is likely to play a crucial role in their consecutive recruitment.


Subject(s)
Insecta/physiology , Motor Neurons/physiology , Action Potentials/physiology , Animals , Exercise Test/instrumentation , Exercise Test/methods , Female , Muscle, Skeletal/innervation , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...