Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transpl Int ; 37: 12787, 2024.
Article in English | MEDLINE | ID: mdl-38845758

ABSTRACT

Organ quality can be assessed prior to transplantation, during normothermic machine perfusion (NMP) of the liver. Evaluation of mitochondrial function by high-resolution respirometry (HRR) may serve as a viability assessment concept in this setting. Freshly collected tissue is considered as optimal sample for HRR, but due to technical and personnel requirements, more flexible and schedulable measurements are needed. However, the impact of cold storage following NMP before processing biopsy samples for mitochondrial analysis remains unknown. We aimed at establishing an appropriate storage protocol of liver biopsies for HRR. Wedge biopsies of 5 human livers during NMP were obtained and assessed by HRR. Analysis was performed after 0, 4, 8, and 12 h of hypothermic storage (HTS) in HTK organ preservation solution at 4°C. With HTS up to 4 h, mitochondrial performance did not decrease in HTS samples compared with 0 h (OXPHOS, 44.62 [34.75-60.15] pmol·s-1·mg wet mass-1 vs. 43.73 [40.69-57.71], median [IQR], p > 0.999). However, at HTS beyond 4 h, mitochondrial respiration decreased. We conclude that HTS can be safely applied for extending the biopsy measurement window for up to 4 h to determine organ quality, but also that human liver respiration degrades beyond 4 h HTS following NMP.


Subject(s)
Liver Transplantation , Liver , Organ Preservation , Perfusion , Humans , Organ Preservation/methods , Liver/pathology , Biopsy , Male , Middle Aged , Female , Mitochondria, Liver/metabolism , Organ Preservation Solutions , Aged , Cell Respiration , Adult
2.
Transpl Int ; 37: 12380, 2024.
Article in English | MEDLINE | ID: mdl-38463463

ABSTRACT

Donor organ biomarkers with sufficient predictive value in liver transplantation (LT) are lacking. We herein evaluate liver viability and mitochondrial bioenergetics for their predictive capacity towards the outcome in LT. We enrolled 43 consecutive patients undergoing LT. Liver biopsy samples taken upon arrival after static cold storage were assessed by histology, real-time confocal imaging analysis (RTCA), and high-resolution respirometry (HRR) for mitochondrial respiration of tissue homogenates. Early allograft dysfunction (EAD) served as primary endpoint. HRR data were analysed with a focus on the efficacy of ATP production or P-L control efficiency, calculated as 1-L/P from the capacity of oxidative phosphorylation P and non-phosphorylating respiration L. Twenty-two recipients experienced EAD. Pre-transplant histology was not predictive of EAD. The mean RTCA score was significantly lower in the EAD cohort (-0.75 ± 2.27) compared to the IF cohort (0.70 ± 2.08; p = 0.01), indicating decreased cell viability. P-L control efficiency was predictive of EAD (0.76 ± 0.06 in IF vs. 0.70 ± 0.08 in EAD-livers; p = 0.02) and correlated with the RTCA score. Both RTCA and P-L control efficiency in biopsy samples taken during cold storage have predictive capacity towards the outcome in LT. Therefore, RTCA and HRR should be considered for risk stratification, viability assessment, and bioenergetic testing in liver transplantation.


Subject(s)
Liver Transplantation , Primary Graft Dysfunction , Humans , Liver Transplantation/adverse effects , Graft Survival , Risk Factors , Liver/pathology , Energy Metabolism , Allografts/pathology , Primary Graft Dysfunction/etiology
3.
EBioMedicine ; 85: 104311, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36374770

ABSTRACT

BACKGROUND: Reliable biomarkers for organ quality assessment during normothermic machine perfusion (NMP) are desired. ATP (adenosine triphosphate) production by oxidative phosphorylation plays a crucial role in the bioenergetic homeostasis of the liver. Thus, detailed analysis of the aerobic mitochondrial performance may serve as predictive tool towards the outcome after liver transplantation. METHODS: In a prospective clinical trial, 50 livers were subjected to NMP (OrganOx Metra) for up to 24.ßh. Biopsy and perfusate samples were collected at the end of cold storage, at 1.ßh, 6.ßh, end of NMP, and 1.ßh after reperfusion. Mitochondrial function and integrity were characterized by high-resolution respirometry (HRR), AMP, ADP, ATP and glutamate dehydrogenase analysis and correlated with the clinical outcome (L-GrAFT score). Real-time confocal microscopy was performed to assess tissue viability. Structural damage was investigated by histology, immunohistochemistry and transmission electron microscopy. FINDINGS: A considerable variability in tissue viability and mitochondrial respiration between individual livers at the end of cold storage was observed. During NMP, mitochondrial respiration with succinate and tissue viability remained stable. In the multivariate analysis of the 35 transplanted livers (15 were discarded), area under the curve (AUC) of LEAK respiration, cytochrome c control efficiency (mitochondrial outer membrane damage), and efficacy of the mitochondrial ATP production during the first 6.ßh of NMP correlated with L-GrAFT. INTERPRETATIONS: Bioenergetic competence during NMP plays a pivotal role in addition to tissue injury markers. The AUC for markers of outer mitochondrial membrane damage, ATP synthesis efficiency and dissipative respiration (LEAK) predict the clinical outcome upon liver transplantation. FUNDING: This study was funded by a Grant from the In Memoriam Dr. Gabriel Salzner Stiftung awarded to SS and the Tiroler Wissenschaftsfond granted to TH.


Subject(s)
Cold Ischemia , Organ Preservation , Humans , Adenosine Triphosphate/metabolism , Liver/metabolism , Mitochondria , Perfusion , Prospective Studies , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...