Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
1.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826299

ABSTRACT

Pangenomes are growing in number and size, thanks to the prevalence of high-quality long-read assemblies. However, current methods for studying sequence composition and conservation within pangenomes have limitations. Methods based on graph pangenomes require a computationally expensive multiple-alignment step, which can leave out some variation. Indexes based on k-mers and de Bruijn graphs are limited to answering questions at a specific substring length k. We present Maximal Exact Match Ordered (MEMO), a pangenome indexing method based on maximal exact matches (MEMs) between sequences. A single MEMO index can handle arbitrary-length queries over pangenomic windows. MEMO enables both queries that test k-mer presence/absence (membership queries) and that count the number of genomes containing k-mers in a window (conservation queries). MEMO's index for a pangenome of 89 human autosomal haplotypes fits in 2.04 GB, 8.8× smaller than a comparable KMC3 index and 11.4× smaller than a PanKmer index. MEMO indexes can be made smaller by sacrificing some counting resolution, with our decile-resolution HPRC index reaching 0.67 GB. MEMO can conduct a conservation query for 31-mers over the human leukocyte antigen locus in 13.89 seconds, 2.5x faster than other approaches. MEMO's small index size, lack of k-mer length dependence, and efficient queries make it a flexible tool for studying and visualizing substring conservation in pangenomes.

2.
J Allergy Clin Immunol Glob ; 3(3): 100250, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699651

ABSTRACT

Background: Sublingual immunotherapy (SLIT) with 12 SQ house dust mile SLIT-tablet (HDM SLIT-tablet) for dust mite-induced perennial allergic rhinitis is reported as effective and safe. Although serious allergic reactions (SARs) and eosinophilic esophagitis (EoE) have infrequently occurred under trial conditions, the safety of HDM SLIT-tablet challenge under real-world conditions is unknown. Objective: Our aim was to estimate the incidence of SARs and EoE due to HDM SLIT-tablet challenge. Methods: Through use of administrative data from Kaiser Permanente Southern California, this prospective observational study identified patients newly administered HDM SLIT-tablet with follow-up until SLIT discontinuation or end of study. Suspected cases of SARs and EoE were detected by using International Classification of Diseases, 10th Revision, diagnosis and Current Procedural Terminology procedure codes and medication dispensing records. A 3-member clinical review committee of allergists adjudicated suspected reactions. The incidence rate of confirmed SARs and EoE per 1000 person years of exposure were determined. Results: A total of 521 patients (93.9% adult and 6.1% pediatric) were exposed to HDM SLIT-tablet challenge from January 2018 through May 2023, for 440.4 person years of exposure. The patients' average age (SD) was 39.3 (14.1) years, 58.7% were female, 44.3% were non-Hispanic White, 40.3% had asthma, and 15.0% had gastroesophageal reflux disease. A SAR occurred in 1 adult patient, and during initial HDM SLIT-tablet challenge, SARs occurred in 2 pediatric adolescents, for an overall incidence of 6.8 SARs per 1000 patient years (95% CI = 2.2-21.1). EoE occurred in 1 adult patient, for an overall incidence of 2.3 cases of EoE per 1000 patient years (95% CI = 0.3-16.1). Conclusions: This real-world study demonstrated that SARs and EoE were infrequent events with HDM SLIT-tablet use, supporting the safety of HDM SLIT-tablets and need for physician supervision with initial challenge.

3.
Article in English | MEDLINE | ID: mdl-38821437

ABSTRACT

BACKGROUND: Although individuals with mild asthma account for 30-40% of acute asthma exacerbations (AAEs), relatively little attention has been paid to risk factors for AAEs in this population. OBJECTIVE: To identify risk factors associated with AAEs in patients with mild asthma. MEHODS (RETROSPECTIVE COHORT STUDY): We used administrative data from a large managed care organization to identify 199,010 adults aged 18-85 who met study criteria for mild asthma between 2013-2018. An asthma-coded qualifying visit (index visit) was identified for each patient. We then used information at the index visit or from the year prior to the index visit to measure potential risk factors for AAEs in the subsequent year. An AAE was defined as either (1) an asthma-coded hospitalization or ED visit, or (2) an asthma-related systemic corticosteroid administration (intramuscular or intravenous) or oral corticosteroid dispensing. Poisson regression models with robust standard errors were utilized to estimate the adjusted risk ratios (aRR) for future AAEs. RESULTS: In the study cohort, mean age was 44, and 64% were female; 6.5% had AAEs within one year after the index visit. In multivariate models, age, gender, race, ethnicity, smoking status, body mass index, prior acute asthma care, and a variety of comorbidities and other clinical characteristics were significant predictors for future AAE risk. CONCLUSION: Population-based disease management strategies for asthma should be expanded to include those with mild asthma in addition to those with moderate to severe disease.

4.
bioRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38712106

ABSTRACT

Motivation: A common method for analyzing genomic repeats is to produce a sequence similarity matrix visualized via a dot plot. Innovative approaches such as StainedGlass have improved upon this classic visualization by rendering dot plots as a heatmap of sequence identity, enabling researchers to better visualize multi-megabase tandem repeat arrays within centromeres and other heterochromatic regions of the genome. However, computing the similarity estimates for heatmaps requires high computational overhead and can suffer from decreasing accuracy. Results: In this work we introduce ModDotPlot, an interactive and alignment-free dot plot viewer. By approximating average nucleotide identity via a k-mer-based containment index, ModDotPlot produces accurate plots orders of magnitude faster than StainedGlass. We accomplish this through the use of a hierarchical modimizer scheme that can visualize the full 128 Mbp genome of Arabidopsis thaliana in under 5 minutes on a laptop. ModDotPlot is bundled with a graphical user interface supporting real-time interactive navigation of entire chromosomes. Availability and Implementation: ModDotPlot is available at https://github.com/marbl/ModDotPlot.

5.
Article in English | MEDLINE | ID: mdl-38663087

ABSTRACT

The Human Genome Project was an enormous accomplishment, providing a foundation for countless explorations into the genetics and genomics of the human species. Yet for many years, the human genome reference sequence remained incomplete and lacked representation of human genetic diversity. Recently, two major advances have emerged to address these shortcomings: complete gap-free human genome sequences, such as the one developed by the Telomere-to-Telomere Consortium, and high-quality pangenomes, such as the one developed by the Human Pangenome Reference Consortium. Facilitated by advances in long-read DNA sequencing and genome assembly algorithms, complete human genome sequences resolve regions that have been historically difficult to sequence, including centromeres, telomeres, and segmental duplications. In parallel, pangenomes capture the extensive genetic diversity across populations worldwide. Together, these advances usher in a new era of genomics research, enhancing the accuracy of genomic analysis, paving the path for precision medicine, and contributing to deeper insights into human biology.

6.
medRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585781

ABSTRACT

Rare structural variants (SVs) - insertions, deletions, and complex rearrangements - can cause Mendelian disease, yet they remain difficult to accurately detect and interpret. We sequenced and analyzed Oxford Nanopore long-read genomes of 68 individuals from the Undiagnosed Disease Network (UDN) with no previously identified diagnostic mutations from short-read sequencing. Using our optimized SV detection pipelines and 571 control long-read genomes, we detected 716 long-read rare (MAF < 0.01) SV alleles per genome on average, achieving a 2.4x increase from short-reads. To characterize the functional effects of rare SVs, we assessed their relationship with gene expression from blood or fibroblasts from the same individuals, and found that rare SVs overlapping enhancers were enriched (LOR = 0.46) near expression outliers. We also evaluated tandem repeat expansions (TREs) and found 14 rare TREs per genome; notably these TREs were also enriched near overexpression outliers. To prioritize candidate functional SVs, we developed Watershed-SV, a probabilistic model that integrates expression data with SV-specific genomic annotations, which significantly outperforms baseline models that don't incorporate expression data. Watershed-SV identified a median of eight high-confidence functional SVs per UDN genome. Notably, this included compound heterozygous deletions in FAM177A1 shared by two siblings, which were likely causal for a rare neurodevelopmental disorder. Our observations demonstrate the promise of integrating long-read sequencing with gene expression towards improving the prioritization of functional SVs and TREs in rare disease patients.

7.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38529488

ABSTRACT

The combination of ultra-long Oxford Nanopore (ONT) sequencing reads with long, accurate PacBio HiFi reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy. To evaluate this new data type, we generated ONT Duplex data for three widely-studied genomes: human HG002, Solanum lycopersicum Heinz 1706 (tomato), and Zea mays B73 (maize). For the diploid, heterozygous HG002 genome, we also used "Pore-C" chromatin contact mapping to completely phase the haplotypes. We found the accuracy of Duplex data to be similar to HiFi sequencing, but with read lengths tens of kilobases longer, and the Pore-C data to be compatible with existing diploid assembly algorithms. This combination of read length and accuracy enables the construction of a high-quality initial assembly, which can then be further resolved using the ultra-long reads, and finally phased into chromosome-scale haplotypes with Pore-C. The resulting assemblies have a base accuracy exceeding 99.999% (Q50) and near-perfect continuity, with most chromosomes assembled as single contigs. We conclude that ONT sequencing is a viable alternative to HiFi sequencing for de novo genome assembly, and has the potential to provide a single-instrument solution for the reconstruction of complete genomes.

8.
bioRxiv ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38496646

ABSTRACT

Nanopore signal analysis enables detection of nucleotide modifications from native DNA and RNA sequencing, providing both accurate genetic/transcriptomic and epigenetic information without additional library preparation. Presently, only a limited set of modifications can be directly basecalled (e.g. 5-methylcytosine), while most others require exploratory methods that often begin with alignment of nanopore signal to a nucleotide reference. We present Uncalled4, a toolkit for nanopore signal alignment, analysis, and visualization. Uncalled4 features an efficient banded signal alignment algorithm, BAM signal alignment file format, statistics for comparing signal alignment methods, and a reproducible de novo training method for k-mer-based pore models, revealing potential errors in ONT's state-of-the-art DNA model. We apply Uncalled4 to RNA 6-methyladenine (m6A) detection in seven human cell lines, identifying 26% more modifications than Nanopolish using m6Anet, including in several genes where m6A has known implications in cancer. Uncalled4 is available open-source at github.com/skovaka/uncalled4.

9.
medRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496498

ABSTRACT

Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

10.
Article in English | MEDLINE | ID: mdl-38327138

ABSTRACT

BACKGROUND: A systematic review and meta-analysis from 2013 reported increased risks of congenital malformations, neonatal death and neonatal hospitalization amongst infants born to women with asthma compared to infants born to mothers without asthma. OBJECTIVE: Our objective was to update the evidence on the associations between maternal asthma and adverse neonatal outcomes. SEARCH STRATEGY: We performed an English-language MEDLINE, Embase, CINAHL, and COCHRANE search with the terms (asthma or wheeze) and (pregnan* or perinat* or obstet*). SELECTION CRITERIA: Studies published from March 2012 until September 2023 reporting at least one outcome of interest (congenital malformations, stillbirth, neonatal death, perinatal mortality, neonatal hospitalization, transient tachypnea of the newborn, respiratory distress syndrome and neonatal sepsis) in a population of women with and without asthma. DATA COLLECTION AND ANALYSIS: The study was reported following the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Quality of individual studies was assessed by two reviewers independently using the Newcastle-Ottawa Scale. Random effects models (≥3 studies) or fixed effect models (≤2 studies) were used with restricted maximum likelihood to calculate relative risk (RR) from prevalence data and the inverse generic variance method where adjusted odds ratios (aORs) from individual studies were combined. MAIN RESULTS: A total of 18 new studies were included, along with the 22 studies from the 2013 review. Previously observed increased risks remained for perinatal mortality (relative risk [RR] 1.14, 95% confidence interval [CI]: 1.05, 1.23 n = 16 studies; aOR 1.07, 95% CI: 0.98-1.17 n = 6), congenital malformations (RR 1.36, 95% CI: 1.32-1.40 n = 17; aOR 1.42, 95% CI: 1.38-1.47 n = 6), and neonatal hospitalization (RR 1.27, 95% CI: 1.25-1.30 n = 12; aOR 1.1, 95% CI: 1.07-1.16 n = 3) amongst infants born to mothers with asthma, while the risk for neonatal death was no longer significant (RR 1.33, 95% CI: 0.95-1.84 n = 8). Previously reported non-significant risks for major congenital malformations (RR1.18, 95% CI: 1.15-1.21; aOR 1.20, 95% CI: 1.15-1.26 n = 3) and respiratory distress syndrome (RR 1.25, 95% CI: 1.17-1.34 n = 4; aOR 1.09, 95% CI: 1.01-1.18 n = 2) reached statistical significance. CONCLUSIONS: Healthcare professionals should remain aware of the increased risks to neonates being born to mothers with asthma.

12.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37066352

ABSTRACT

Knowledge of locations and activities of cis -regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our V al i dated S ystematic I ntegrati on (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.

13.
Genome Biol Evol ; 15(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37728212

ABSTRACT

Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals.


Subject(s)
Chiroptera , Neoplasms , Humans , Animals , Chiroptera/genetics , Phylogeny , Evolution, Molecular , Genomics , Longevity , Neoplasms/genetics , Neoplasms/veterinary
14.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37662366

ABSTRACT

We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.

15.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425881

ABSTRACT

Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).

16.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37497639

ABSTRACT

Over the past 30 years, a community of scientists has pieced together every base pair of the human reference genome from telomere to telomere. Interestingly, most human genomics studies omit more than 5% of the genome from their analyses. Under "normal" circumstances, omitting any chromosome(s) from an analysis of the human genome would be a cause for concern, with the exception being sex chromosomes. Sex chromosomes in eutherians share an evolutionary origin as an ancestral pair of autosomes. In humans, they share 3 regions of high-sequence identity (∼98-100%), which, along with the unique transmission patterns of the sex chromosomes, introduce technical artifacts in genomic analyses. However, the human X chromosome bears numerous important genes, including more "immune response" genes than any other chromosome, which makes its exclusion irresponsible when sex differences across human diseases are widespread. To better characterize the possible effect of the inclusion/exclusion of the X chromosome on variants called, we conducted a pilot study on the Terra cloud platform to replicate a subset of standard genomic practices using both the CHM13 reference genome and the sex chromosome complement-aware reference genome. We compared the quality of variant calling, expression quantification, and allele-specific expression using these 2 reference genome versions across 50 human samples from the Genotype-Tissue Expression consortium annotated as females. We found that after correction, the whole X chromosome (100%) can generate reliable variant calls, allowing for the inclusion of the whole genome in human genomics analyses as a departure from the status quo of omitting the sex chromosomes from empirical and clinical genomics studies.


Subject(s)
Genome, Human , Sex Chromosomes , Humans , Female , Male , Pilot Projects , Sex Chromosomes/genetics , Genomics , X Chromosome
17.
Genome Biol ; 24(1): 157, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37403156

ABSTRACT

BACKGROUND: The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS: Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION: Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.


Subject(s)
Genome, Human , Genomics , Animals , Humans , Segmental Duplications, Genomic , Multigene Family , Centromere/genetics , NK Cell Lectin-Like Receptor Subfamily C/genetics
18.
J Allergy Clin Immunol Pract ; 11(12): 3585-3594, 2023 12.
Article in English | MEDLINE | ID: mdl-37482082

ABSTRACT

Asthma is one of the most common chronic diseases in pregnancy and is associated with adverse perinatal outcomes. Asthma symptoms worsen in approximately 40% of women, and exacerbations requiring medical intervention occur in at least 20% of women. Factors associated with exacerbation and worsening asthma include multiparity, obesity, Black race, exacerbations before pregnancy, and poor asthma control. Exacerbations are associated with further increased risks for poor perinatal outcomes, including low birth weight, preterm birth, and small for gestational age (SGA) status, as well as an increase in the development of asthma in early childhood. Common medications used for asthma, including short-acting ß-agonists and inhaled corticosteroids, are considered safe to use in pregnancy. Whereas guidelines generally suggest traditional step therapy for managing asthma in pregnancy, there are alternative models of care and management approaches that may be effective in pregnancy, but require more research. These include single-inhaler maintenance and reliever therapy, treatment adjustment with FeNO, treatable traits personalized medicine approaches, and telemedicine. Little is known about changes to asthma in the postpartum period. However, low adherence to medication and the potential effects of postpartum depression on asthma exacerbation risk warrant further research.


Subject(s)
Anti-Asthmatic Agents , Asthma , Premature Birth , Pregnancy , Infant, Newborn , Child, Preschool , Female , Humans , Premature Birth/drug therapy , Asthma/drug therapy , Asthma/epidemiology , Adrenal Cortex Hormones/therapeutic use , Nebulizers and Vaporizers , Administration, Inhalation , Postpartum Period , Anti-Asthmatic Agents/therapeutic use
19.
BMC Bioinformatics ; 24(1): 263, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353753

ABSTRACT

BACKGROUND: Protein-protein interactions play a crucial role in almost all cellular processes. Identifying interacting proteins reveals insight into living organisms and yields novel drug targets for disease treatment. Here, we present a publicly available, automated pipeline to predict genome-wide protein-protein interactions and produce high-quality multimeric structural models. RESULTS: Application of our method to the Human and Yeast genomes yield protein-protein interaction networks similar in quality to common experimental methods. We identified and modeled Human proteins likely to interact with the papain-like protease of SARS-CoV2's non-structural protein 3. We also produced models of SARS-CoV2's spike protein (S) interacting with myelin-oligodendrocyte glycoprotein receptor and dipeptidyl peptidase-4. CONCLUSIONS: The presented method is capable of confidently identifying interactions while providing high-quality multimeric structural models for experimental validation. The interactome modeling pipeline is available at usegalaxy.org and usegalaxy.eu.


Subject(s)
COVID-19 , Protein Interaction Mapping , Humans , RNA, Viral/metabolism , SARS-CoV-2 , Saccharomyces cerevisiae/metabolism
20.
Nat Commun ; 14(1): 3694, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344528

ABSTRACT

Finger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21st century, here we present the assembly and annotation of a chromosome-scale reference genome. We show that this ~1.3 million years old allotetraploid has a high level of homoeologous gene retention and lacks subgenome dominance. Population structure is mainly driven by the differential presence of large wild segments in the pericentromeric regions of several chromosomes. Trait mapping, followed by variant analysis of gene candidates, reveals that loss of purple coloration of anthers and stigma is associated with loss-of-function mutations in the finger millet orthologs of the maize R1/B1 and Arabidopsis GL3/EGL3 anthocyanin regulatory genes. Proanthocyanidin production in seed is not affected by these gene knockouts.


Subject(s)
Eleusine , Humans , Infant , Eleusine/genetics , Plant Breeding , Genome, Plant/genetics , Phenotype , Africa, Eastern
SELECTION OF CITATIONS
SEARCH DETAIL
...