Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(25): 10271-9, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27241282

ABSTRACT

Here we present the syntheses and structural, spectroscopic, as well as electrochemical properties of four dinitrosyl iron complexes (DNICs) based on silicon- and carbon-derived di- and tripodal phosphines. Whereas CH3C(CH2PPh2)3 and Ph2Si(CH2PPh2)2 coordinate iron in a η(2) - binding mode, CH3Si(CH2PPh2)3 undergoes cleavage of one Si-C bond to afford [Fe(NO)2(P(CH3)Ph2)2] at elevated temperatures. The complexes were characterized by IR spectroelectrochemistry as well as UV-vis measurements. The oxidized {Fe(NO)2}(9) compounds were obtained by oxidation with (NH4)2[Ce(NO3)6] and their properties evaluated with Mössbauer and IR spectroscopy. Stability experiments on the complexes suggest that they are capable of releasing their NO-ligands in the oxidized {Fe(NO)2}(9) but not in the reduced {Fe(NO)2}(10) form. A detailed DFT analysis is provided in order to understand the electronic configurations and the complexes' ability to release NO.

2.
Br J Pharmacol ; 172(6): 1638-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24628281

ABSTRACT

Carbon monoxide (CO) is an endogenous small signalling molecule in the human body, produced by the action of haem oxygenase on haem. Since it is very difficult to apply safely as a gas, solid storage and delivery forms for CO are now explored. Most of these CO-releasing molecules (CORMs) are based on the inactivation of the CO by coordinating it to a transition metal centre in a prodrug approach. After a brief look at the potential cellular target structures of CO, an overview of the design principles and activation mechanisms for CO release from a metal coordination sphere is given. Endogenous and exogenous triggers discussed include ligand exchange reactions with medium, enzymatically-induced CO release and photoactivated liberation of CO. Furthermore, the attachment of CORMs to hard and soft nanomaterials to confer additional target specificity to such systems is critically assessed. A survey of analytical methods for the study of the stoichiometry and kinetics of CO release, as well as the tracking of CO in living systems by using fluorescent probes, concludes this review. CORMs are very valuable tools for studying CO bioactivity and might lead to new drug candidates; however, in the design of future generations of CORMs, particular attention has to be paid to their drug-likeness and the tuning of the peripheral 'drug sphere' for specific biomedical applications. Further progress in this field will thus critically depend on a close interaction between synthetic chemists and researchers exploring the physiological effects and therapeutic applications of CO.


Subject(s)
Carbon Monoxide/administration & dosage , Heme Oxygenase (Decyclizing)/metabolism , Metals/chemistry , Animals , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Coordination Complexes/administration & dosage , Coordination Complexes/chemistry , Heme/metabolism , Humans , Nanostructures , Prodrugs , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...