Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 347(6229): 1455-8, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25814579

ABSTRACT

Dominating finite-range interactions in many-body systems can lead to intriguing self-ordered phases of matter. For quantum magnets, Ising models with power-law interactions are among the most elementary systems that support such phases. These models can be implemented by laser coupling ensembles of ultracold atoms to Rydberg states. Here, we report on the experimental preparation of crystalline ground states of such spin systems. We observe a magnetization staircase as a function of the system size and show directly the emergence of crystalline states with vanishing susceptibility. Our results demonstrate the precise control of Rydberg many-body systems and may enable future studies of phase transitions and quantum correlations in interacting quantum magnets.

2.
Science ; 334(6053): 200-3, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21998381

ABSTRACT

Quantum phases of matter are characterized by the underlying correlations of the many-body system. Although this is typically captured by a local order parameter, it has been shown that a broad class of many-body systems possesses a hidden nonlocal order. In the case of bosonic Mott insulators, the ground state properties are governed by quantum fluctuations in the form of correlated particle-hole pairs that lead to the emergence of a nonlocal string order in one dimension. By using high-resolution imaging of low-dimensional quantum gases in an optical lattice, we directly detect these pairs with single-site and single-particle sensitivity and observe string order in the one-dimensional case.

SELECTION OF CITATIONS
SEARCH DETAIL
...