Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 25(6): 3532-3541, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38750618

ABSTRACT

Despite the potential of lignocellulose in manufacturing value-added chemicals and biofuels, its efficient biotechnological conversion by enzymatic hydrolysis still poses major challenges. The complex interplay between xylan, cellulose, and lignin in fibrous materials makes it difficult to assess underlying physico- and biochemical mechanisms. Here, we reduce the complexity of the system by creating matrices of cellulose, xylan, and lignin, which consists of a cellulose base layer and xylan/lignin domains. We follow enzymatic degradation using an endoxylanase by high-speed atomic force microscopy and surface plasmon resonance spectroscopy to obtain morphological and kinetic data. Fastest reaction kinetics were observed at low lignin contents, which were related to the different swelling capacities of xylan. We demonstrate that the complex processes taking place at the interfaces of lignin and xylan in the presence of enzymes can be monitored in real time, providing a future platform for observing phenomena relevant to fiber-based systems.


Subject(s)
Endo-1,4-beta Xylanases , Lignin , Wood , Xylans , Lignin/chemistry , Lignin/metabolism , Xylans/chemistry , Xylans/metabolism , Wood/chemistry , Wood/metabolism , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Cellulose/chemistry , Cellulose/metabolism , Hydrolysis , Microscopy, Atomic Force , Kinetics
2.
Carbohydr Polym ; 337: 122137, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710567

ABSTRACT

Xylans' unique properties make it attractive for a variety of industries, including paper, food, and biochemical production. While for some applications the preservation of its natural structure is crucial, for others the degradation into monosaccharides is essential. For the complete breakdown, the use of several enzymes is required, due to its structural complexity. In fact, the specificity of enzymatically-catalyzed reactions is guided by the surface, limiting or regulating accessibility and serving structurally encoded input guiding the actions of the enzymes. Here, we investigate enzymes at surfaces rich in xylan using surface plasmon resonance spectroscopy. The influence of diffusion and changes in substrate morphology is studied via enzyme surface kinetics simulations, yielding reaction rates and constants. We propose kinetic models, which can be applied to the degradation of multilayer biopolymer films. The most advanced model was verified by its successful application to the degradation of a thin film of polyhydroxybutyrate treated with a polyhydroxybutyrate-depolymerase. The herein derived models can be employed to quantify the degradation kinetics of various enzymes on biopolymers in heterogeneous environments, often prevalent in industrial processes. The identification of key factors influencing reaction rates such as inhibition will contribute to the quantification of intricate dynamics in complex systems.


Subject(s)
Surface Plasmon Resonance , Xylans , Xylans/chemistry , Xylans/metabolism , Surface Plasmon Resonance/methods , Kinetics , Surface Properties
3.
Microb Cell Fact ; 23(1): 85, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493086

ABSTRACT

BACKGROUND: The abundance of glucuronoxylan (GX) in agricultural and forestry residual side streams positions it as a promising feedstock for microbial conversion into valuable compounds. By engineering strains of the widely employed cell factory Saccharomyces cerevisiae with the ability to directly hydrolyze and ferment GX polymers, we can avoid the need for harsh chemical pretreatments and costly enzymatic hydrolysis steps prior to fermentation. However, for an economically viable bioproduction process, the engineered strains must efficiently express and secrete enzymes that act in synergy to hydrolyze the targeted polymers. RESULTS: The aim of this study was to equip the xylose-fermenting S. cerevisiae strain CEN.PK XXX with xylanolytic enzymes targeting beechwood GX. Using a targeted enzyme approach, we matched hydrolytic enzyme activities to the chemical features of the GX substrate and determined that besides endo-1,4-ß-xylanase and ß-xylosidase activities, α-methyl-glucuronidase activity was of great importance for GX hydrolysis and yeast growth. We also created a library of strains expressing different combinations of enzymes, and screened for yeast strains that could express and secrete the enzymes and metabolize the GX hydrolysis products efficiently. While strains engineered with BmXyn11A xylanase and XylA ß-xylosidase could grow relatively well in beechwood GX, strains further engineered with Agu115 α-methyl-glucuronidase did not display an additional growth benefit, likely due to inefficient expression and secretion of this enzyme. Co-cultures of strains expressing complementary enzymes as well as external enzyme supplementation boosted yeast growth and ethanol fermentation of GX, and ethanol titers reached a maximum of 1.33 g L- 1 after 48 h under oxygen limited condition in bioreactor fermentations. CONCLUSION: This work underscored the importance of identifying an optimal enzyme combination for successful engineering of S. cerevisiae strains that can hydrolyze and assimilate GX. The enzymes must exhibit high and balanced activities, be compatible with the yeast's expression and secretion system, and the nature of the hydrolysis products must be such that they can be taken up and metabolized by the yeast. The engineered strains, particularly when co-cultivated, display robust growth and fermentation of GX, and represent a significant step forward towards a sustainable and cost-effective bioprocessing of GX-rich biomass. They also provide valuable insights for future strain and process development targets.


Subject(s)
Gene Editing , Saccharomyces cerevisiae , Xylans , Saccharomyces cerevisiae/metabolism , Fermentation , Hydrolysis , CRISPR-Cas Systems , Ethanol/metabolism , Polymers/metabolism , Glucuronidase , Xylose/metabolism
4.
Sci Rep ; 13(1): 3977, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894569

ABSTRACT

Activated carbon produced from biomass exhibits a high specific surface area due to the natural hierarchical porous structure of the precursor material. To reduce production costs of activated carbon, bio-waste materials receive more and more attention, which has led to a steep increase in the number of publications over the past decade. However, the characteristics of activated carbon are highly dependent on the properties of the precursor material used, making it difficult to draw assumptions about activation conditions for new precursor materials based on published work. Here, we introduce a Design of Experiment methodology with a Central Composite Design to better predict the properties of activated carbons from biomass. As a model precursor, we employ well-defined regenerated cellulose-based fibers which contain 25 wt.% chitosan as intrinsic dehydration catalyst and nitrogen donor. The use of the DoE methodology opens up the possibility to better identify the crucial dependencies between activation temperature and impregnation ratio on the yield, surface morphology, porosity and chemical composition of the activated carbon, independent of the used biomass. The use of DoE yields contour plots, which allows for more facile analysis on correlations between activation conditions and activated carbon properties, thus enabling its tailor-made manufacturing.

5.
Carbohydr Polym ; 294: 119737, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868741

ABSTRACT

Enzymatic degradation of plant polysaccharide networks is a complex process that involves disrupting an intimate assembly of cellulose and hemicelluloses in fibrous matrices. To mimic this assembly and to elucidate the efficiency of enzymatic degradation in a rapid way, models with physicochemical equivalence to natural systems are needed. Here, we employ xylan-coated cellulose thin films to monitor the hydrolyzing activity of an endo-1,4-ß-xylanase. In situ surface plasmon resonance spectroscopy (SPRS) revealed a decrease in xylan areal mass ranging from 0.01 ± 0.02 to 0.52 ± 0.04 mg·m-2. The extent of digestion correlates to increasing xylanase concentration. In addition, ex situ determination of released monosaccharides revealed that incubation time was also a significant factor in degradation (P > 0.01). For both experiments, atomic force microscopy confirmed the removal of xylans from the cellulose thin films. We provide a new model platform that offers nanoscale sensitivity for investigating biopolymer interactions and their susceptibility to enzymatic hydrolysis.


Subject(s)
Cellulose , Xylans , Biopolymers , Cellulose/chemistry , Endo-1,4-beta Xylanases/metabolism , Hydrolysis , Xylans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...