Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Health ; 22(1): 77-96, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295074

ABSTRACT

Disasters such as the Ahr Valley flood in 2021 make us aware of the importance of functioning healthcare facilities. Their functionality depends on the availability of drinking water. Water safety planning is a long-established method to increase the safety of water utilities. Our work supports the implementation of water safety planning in healthcare facilities during normal operations and emergency situations concerning the water supply. The authors conducted a stakeholder mapping exercise and problem awareness analysis. Based on these results, it was identified what is needed to overcome barriers to water safety planning (WSP). Building on existing procedures, the WSP concept, and latest scientific findings, an event-specific risk assessment method for healthcare facilities was developed and applied in a case study. Based on an analysis of water demand, water-related processes, and infrastructure, potentially necessary components for establishing an emergency supply were identified. For these, based on technical and legal requirements, planning principles were developed, and prototypes of components for emergency water supply were built. They were tested in pilot trials, particularly regarding hygienic safety. For the management of crises in hospitals, a survey was carried out on the command structures used in practice. Finally, recommendations were drawn based on the German Hospital Incident Command System.


Subject(s)
Drinking Water , Water Supply , Risk Assessment , Hospitals , Delivery of Health Care
2.
Water Environ Res ; 95(9): e10918, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37555484

ABSTRACT

Variation of the digester temperature during the year enables the operation of digesters as seasonal heat storage contributing to a holistic heat management at water resource recovery facilities. Full- and lab-scale process data were conducted to examine the effect of the digester temperature on process stability, sludge liquor quality, and dewaterability. Both full- and lab-scale digesters show a stable anaerobic degradation process with a hydraulic retention time of more than 20 days and organic load rates up to 2.2-kg COD/(m3 ·day) at temperatures between 33 and 53°C. The concentrations of soluble COD and ammonium-nitrogen in the sludge liquor digested at 53°C are 2.6 to 5.8 times and 1.3 times higher, respectively, than in the sludge liquor digested at 37°C. Dewatering tests show an enhancement of the dewaterability but a clear increase in the polymer demand at increased digester temperature. PRACTITIONER POINTS: Digesters can operate as seasonal heat storage within mesophilic and thermophilic temperatures Stable anaerobic degradation process for HRT above 20 days Maintenance of process stability as well as quantity and quality of biogas Increase of soluble COD in sludge liquor at higher temperatures Better dewaterability but higher demand for polymers with increasing temperature.


Subject(s)
Hot Temperature , Sewage , Temperature , Anaerobiosis , Bioreactors , Waste Disposal, Fluid
3.
J Environ Manage ; 323: 116057, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36099866

ABSTRACT

Co-substrates can increase gas production in a digester significantly. The characteristic properties of substrates, depending on the amounts added, influence the processes in the digester reactor. As a consequence, they can have an impact on the buffer capacity, pH value, C:N ratio, dewaterability of the digested sludge and introduce contaminants to the digester among others. In the future, a discontinuous digester feeding could contribute to the demand-driven energy supply by WRRFs. Due to the increasing instability caused by fluctuating organic load, higher demands are placed on the selection of co-substrates. This study examined to what extent flotation sludge from dairy companies is suitable for a sustainable co-digestion. In addition, it should be evaluated whether flotation sludge is applicable for demand-driven feeding strategies. It was shown that flotation sludge has positive effects on the reactor as well as a significant increase in biogas production and a high degree of degradation of at least 80%. Even at high organic loads pH remained at a high level at around 7.5 due to the high alkalinity of the substrate. Nonetheless, addition of more than 20 w-% flotation sludge lead to a significant decrease of the dewaterability of the digested sludge.


Subject(s)
Biofuels , Sewage , Anaerobiosis , Biofuels/analysis , Bioreactors , Methane , Sewage/chemistry
4.
Ambio ; 51(3): 611-622, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34013441

ABSTRACT

Phosphorus (P) is an essential element to all living beings but also a finite resource. P-related problems center around broken P cycles from local to global scales. This paper presents outcomes from the 9th International Phosphorus Workshop (IPW9) held 2019 on how to move towards a sustainable P management. It is based on two sequential discussion rounds with all participants. Important progress was reported regarding the awareness of P as finite mineable resource, technologies to recycle P, and legislation towards a circular P economy. Yet, critical deficits were identified such as how to handle legacy P, how climate change may affect ecosystem P cycling, or working business models to up-scale existing recycling models. Workshop participants argued for more transdisciplinary networks to narrow a perceived science-practice/policy gap. While this gap may be smaller in reality as illustrated with a Swiss example, we formulate recommendations how to bridge this gap more effectively.


Subject(s)
Ecosystem , Phosphorus , Humans , Interdisciplinary Research , Recycling
5.
Water Sci Technol ; 84(2): 384-392, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34312345

ABSTRACT

Dewatered digested sludge and compost may act as a conduit for microplastics (<5 mm) in terrestrial and subsequently aquatic systems. However, standardized methods for microplastics analyses are lacking. Thus, the aim is to demonstrate the applicability of wet-sieving as a way to quantify large microplastic particles (MPP, 1-5 mm) in dewatered digested sludge and compost. Additionally, we investigated the organic fraction of municipal solid waste, expired drinks and slaughterhouse waste used as co-substrate for anaerobic digestion at wastewater treatment plants (WWTP). Therefore, we collected samples from six WWTP and two biogas plants. These were then wet-sieved and potential MPP analysed via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). In dewatered digested sludge the amount of microplastics ranged from 0 to 326 MPP/kg TS (total solids) while compost contained 39-102 MPP/kg TS. Our results show that with 0-36 MPP/kg TS co-substrates are not necessarily a source of microplastics in WWTP. Furthermore, we found film to be the most abundant shape in the biogas plant samples, whereas, in WWTP samples film, fragments and fibers were detected the most. ATR-FTIR revealed that polyvinyl chloride, polyester, polypropylene, and polyethylene were the most abundant materials found across all samples.


Subject(s)
Composting , Sewage , Bioreactors , Microplastics , Plastics
6.
Water Environ Res ; 92(4): 534-540, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31386784

ABSTRACT

Water resource recovery facilities (WRRF) can make an important contribution to increase the share of renewable energies in Germany. In this context, it is important to utilize unused digester capacities on WRRF. In addition, a demand-orientated biogas production could synchronize electricity demand and electricity generation and improve the overall energetic balance of the WRRF. As part of the project "Water Resource Recovery Facilities in interaction with the waste and energy industry: A German-Austrian Dialogue - COMITO," the influence of residues from the dairy industry on the digestion process was examined as well as the suitability for the flexibilization of digester gas production. Four reactors were fed with different amounts of flotation sludge from the dairy industry for several months. The difference in the feed resulted in organic loading (OLR) rates between 3.2 kg COD/(m3  day) and 6 kg COD/(m3  day). The reactors were fed with a daily shock load. The investigations showed that volumetric loads up to 4.4 kg COD/(m3  day) did not lead to an accumulation of organic acids. Organic loading rate of 6 kg COD/(m3  day) showed a significant accumulation of organic acids higher than 2,500 mg/L oHAc. Nevertheless, the reactor could be operated with a degradation rate of 71% with a corresponding biogas yield with a methane content of 71%. With increasing flotation sludge content, a higher concentration in ammonium of up to 2.000 mg/L NH4 -N could be detected in the effluent of the digester. Despite higher phosphorus concentration in the flotation sludge, the concentration of PO4 -P remained constant for all reactors fluctuating between 20 and 40 mg/L PO4 -P. Dewatering worsened significantly with increasing levels of flotation sludge. PRACTITIONER POINTS: Main purpose of the research is to flexibilize digester operation on WRRF using flotation sludges from the dairy industry. Flexibilization of the digester using flotation sludge is possible up to an organic load of 6 kg COD/(m3  day). Higher NH4 -N concentration in the effluent of the digester must be accepted when using higher amounts of flotation sludge. Phosphate concentration in the effluent of the digester remained on a low level despite higher phosphorus content in the flotation sludge. High levels of organic acids (mainly acetic acid) can be tolerated and can be recovered within a short time after reducing the load.


Subject(s)
Dairying , Sewage , Anaerobiosis , Bioreactors , Germany , Methane
7.
Article in English | MEDLINE | ID: mdl-18821238

ABSTRACT

The Kemicond process for sludge conditioning consists of chemical treatment with sulphuric acid and hydrogen peroxide at a pH-value of approximately 4 followed by a dewatering unit. It is shown that chemical treatment can improve the dewaterability of ferruginous digested sludge. It is concluded that the Fenton process as well as the oxidation of organics and the formation of iron hydroxo complexes are important reaction mechanisms. Furthermore, the organic matter changes through the acidic oxidative process. With the improvement in dewaterability, it is possible to achieve an increase in TS concentration, which affects a reduction of the sludge volume. Cost savings for sludge disposal can amortize the additional investment and operational costs for chemical treatment.


Subject(s)
Filtration/methods , Sewage/chemistry , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Water/chemistry , Costs and Cost Analysis , Filtration/economics , Filtration/instrumentation , Hydrogen Peroxide/chemistry , Iron/chemistry , Waste Disposal, Fluid/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...