Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(11): 18037-18047, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34735135

ABSTRACT

A single chromophore can only emit a maximum of one single photon per excitation cycle. This limitation results in a phenomenon commonly referred to as photon antibunching (pAB). When multiple chromophores contribute to the fluorescence measured, the degree of pAB has been used as a metric to "count" the number of chromophores. But the fact that chromophores can switch randomly between bright and dark states also impacts pAB and can lead to incorrect chromophore numbers being determined from pAB measurements. By both simulations and experiment, we demonstrate how pAB is affected by independent and collective chromophore blinking, enabling us to formulate universal guidelines for correct interpretation of pAB measurements. We use DNA-origami nanostructures to design multichromophoric model systems that exhibit either independent or collective chromophore blinking. Two approaches are presented that can distinguish experimentally between these two blinking mechanisms. The first one utilizes the different excitation intensity dependence on the blinking mechanisms. The second approach exploits the fact that collective blinking implies energy transfer to a quenching moiety, which is a time-dependent process. In pulsed-excitation experiments, the degree of collective blinking can therefore be altered by time gating the fluorescence photon stream, enabling us to extract the energy-transfer rate to a quencher. The ability to distinguish between different blinking mechanisms is valuable in materials science, such as for multichromophoric nanoparticles like conjugated-polymer chains as well as in biophysics, for example, for quantitative analysis of protein assemblies by counting chromophores.


Subject(s)
Blinking , Nanoparticles , Nanoparticles/chemistry , Photons , Energy Transfer , Spectrometry, Fluorescence/methods
2.
J Phys Chem Lett ; 11(13): 5192-5198, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32506907

ABSTRACT

By measuring the fluorescence photon statistics of single chains of a conjugated polymer, we determine the lifetime of the metastable dark state, the triplet exciton. The single molecule emits single photons one at a time, giving rise to photon antibunching. These photons appear bunched in time over longer time scales because of excursions to the triplet dark state. Remarkably, this triplet intermittency in the fluorescence is spontaneously suppressed over time scales of seconds, implying that either triplet formation is inhibited or that triplets are selectively quenched without the singlet fluorescence being affected. Such discrete switching in the strength of photon bunching is only seen in highly ordered and rigid chains of a ladder-type conjugated polymer. It does not occur in single dye molecules. We propose that trapped photogenerated charges on the chain selectively quench triplets but not singlets, presumably because the effective diffusion length of triplets is longer along the highly rigid ladder-type backbone.

3.
Proc Natl Acad Sci U S A ; 115(16): E3626-E3634, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610345

ABSTRACT

The breaking of molecular symmetry through photoexcitation is a ubiquitous but rather elusive process, which, for example, controls the microscopic efficiency of light harvesting in molecular aggregates. A molecular excitation within a π-conjugated segment will self-localize due to strong coupling to molecular vibrations, locally changing bond alternation in a process which is fundamentally nondeterministic. Probing such symmetry breaking usually relies on polarization-resolved fluorescence, which is most powerful on the level of single molecules. Here, we explore symmetry breaking by designing a large, asymmetric acceptor-donor-acceptor (A1-D-A2) complex 10 nm in length, where excitation energy can flow from the donor, a π-conjugated oligomer, to either one of the two boron-dipyrromethene (bodipy) dye acceptors of different color. Fluorescence correlation spectroscopy (FCS) reveals a nondeterministic switching between the energy-transfer pathways from the oligomer to the two acceptor groups on the submillisecond timescale. We conclude that excitation energy transfer, and light harvesting in general, are fundamentally nondeterministic processes, which can be strongly perturbed by external stimuli. A simple demonstration of the relation between exciton localization within the extended π-system and energy transfer to the endcap is given by considering the selectivity of endcap emission through the polarization of the excitation light in triads with bent oligomer backbones. Bending leads to increased localization so that the molecule acquires bichromophoric characteristics in terms of its fluorescence photon statistics.

SELECTION OF CITATIONS
SEARCH DETAIL
...