Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 25(10): 3319-3333, 2019 10.
Article in English | MEDLINE | ID: mdl-31148318

ABSTRACT

Climate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed. In this study, we evaluated the effect of water level (WL) and inundation duration (ID) on carbon dioxide (CO2 ) fluxes by analysing a 10-year (2008-2017) eddy covariance dataset from a seasonally inundated freshwater marl prairie in the Everglades National Park. Both gross primary production (GPP) and ecosystem respiration (ER) rates showed declines under inundation. While GPP rates decreased almost linearly as WL and ID increased, ER rates were less responsive to WL increase beyond 30 cm and extended inundation periods. The unequal responses between GPP and ER caused a weaker net ecosystem CO2 sink strength as inundation intensity increased. Eventually, the ecosystem tended to become a net CO2 source on a daily basis when either WL exceeded 46 cm or inundation lasted longer than 7 months. Particularly, with an extended period of high-WLs in 2016 (i.e., WL remained >40 cm for >9 months), the ecosystem became a CO2 source, as opposed to being a sink or neutral for CO2 in other years. Furthermore, the extreme inundation in 2016 was followed by a 4-month postinundation period with lower net ecosystem CO2 uptake compared to other years. Given that inundation plays a key role in controlling ecosystem CO2 balance, we suggest that a future with more intensive inundation caused by climate change or water management activities can weaken the CO2 sink strength of the Everglades freshwater marl prairies and similar wetlands globally, creating a positive feedback to climate change.


Subject(s)
Carbon Dioxide , Wetlands , Climate Change , Ecosystem , Fresh Water
2.
Ecol Evol ; 8(7): 3711-3725, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29686852

ABSTRACT

Ecotypic differentiation in the tussock-forming sedge Eriophorum vaginatum has led to the development of populations that are locally adapted to climate in Alaska's moist tussock tundra. As a foundation species, E. vaginatum plays a central role in providing topographic and microclimatic variation essential to these ecosystems, but a changing climate could diminish the importance of this species. As Arctic temperatures have increased, there is evidence of adaptational lag in E. vaginatum, as locally adapted ecotypes now exhibit reduced population growth rates. Whether there is a physiological underpinning to adaptational lag is unknown. Accordingly, this possibility was investigated in reciprocal transplant gardens. Tussocks of E. vaginatum from sites separated by ~1° latitude (Coldfoot: 67°15'N, Toolik Lake: 68°37', Sagwon: 69°25') were transplanted into the Toolik Lake and Sagwon sites and exposed to either an ambient or an experimental warming treatment. Five tussocks pertreatment combination were measured at each garden to determine photosynthetic capacity (i.e., Vcmax and Jmax) and dark respiration rate (Rd) at measurement temperatures of 15, 20, and 25°C. Photosynthetic enhancements or homeostasis were observed for all ecotypes at both gardens under increased growth temperature, indicating no negative effect of elevated temperature on photosynthetic capacity. Further, no evidence of thermal acclimation in Rd was observed for any ecotype, and there was little evidence of ecotypic variation in Rd. As such, no physiological contribution to adaptational lag was observed given the increase in growth temperature (up to ~2°C) provided by this study. Despite neutral to positive effects of increased growth temperature on photosynthesis in E. vaginatum, it appears to confer no lasting advantage to the species.

3.
PLoS One ; 9(12): e115058, 2014.
Article in English | MEDLINE | ID: mdl-25521299

ABSTRACT

This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009-2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (-11 to -110 g CO2 m-2 yr-1) compared to El Niño and neutral years (-5 to -43.5 g CO2 m-2 yr-1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m-2 yr-1) except in one exceptionally wet year that was associated with an El Niño phase (-16 g CO2 m-2 yr-1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades.


Subject(s)
Carbon Dioxide/analysis , Climatic Processes , Wetlands , Florida , Fresh Water/chemistry , Hydrology
4.
Tree Physiol ; 22(15-16): 1079-92, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12414368

ABSTRACT

Carbon (C) exchange of an approximately 200-year-old eastern hemlock (Tsuga canadensis L.) forest in central Massachusetts, USA, was estimated from mid-October 2000 through October 2001 based on eddy covariance measurements and statistical modeling from microclimatic data. Measurements were made in 68% of the hours during the year of study, with > 50% coverage in all months except December and August. Data were filtered by wind direction and atmospheric turbulence to remove invalid measurements. Analysis of filtered data showed that photosynthetically active radiation (PAR) was significant in predicting C exchange, except during the winter. Daily minimum air temperature affected C exchange in autumn and winter, whereas time of day, water vapor pressure deficit and air temperature had significant effects on C storage in spring, summer and fall. Most C storage in the stand occurred in April through July and in October 2001, with maximum rates in April and May. Persistent cold weather prevented C storage in December through March. In early spring 2001, C uptake was sensitive to nocturnal frost: daily minimum air temperatures below 0 degrees C reduced C fixation, and minima below -5 degrees C caused its virtual cessation. Soil temperature was a poor predictor of C balance during this period. In August, high soil and air temperatures (averaging 16.7 and 21.1 degrees C, respectively) drove high ecosystem respiration, which approximately balanced C uptake. These patterns show potential for stimulated C storage in hemlock forests in a warmer climate with fewer spring and autumn frosts, but reduced C storage during warmer summers. Estimated annual C storage was 3.0 Mg ha(-1), which is higher than for younger coniferous and deciduous forests during earlier years in the northeastern USA. Long-term data are needed to determine if the estimated high C storage in this hemlock forest is a result of interannual climate variation or an effect of forest composition.


Subject(s)
Carbon/metabolism , Trees/physiology , Tsuga/physiology , Biomass , Carbon Dioxide/metabolism , Climate , Environment , Massachusetts , Photosynthesis/physiology , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Seasons , Soil , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...