Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(42): 9424-9432, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37824438

ABSTRACT

Lateral heterostructures of two-dimensional (2D) transition metal dichalcogenides offer promise as platforms for a wide variety of applications from exotic physics to environmental control. Further development and study of these heterostructures require characterization methods that assess the quality of the heterostructures. Here, we extend current characterization strategies to create photoluminescence (PL), Raman, reflection contrast, and second harmonic generation (SHG) maps of individual monolayer core-shell WS2-MoS2 lateral heterostructures that were synthesized via water vapor assisted chemical vapor transport. Together, these methods provide the correlations required to resolve the effects of excitons, trions, lattice defects, strain, and alloying. The comparisons show substantial differences, especially in the regions near and at the narrow heterointerface. Comparisons between the different spectral maps show the importance of metal alloying for understanding the electronic and spatial structures of heterostructures. The results are compared to previous work on similar lateral heterostructures created by different methods.

2.
Science ; 370(6515): 442-445, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33093106

ABSTRACT

Euclidean geometry is the fundamental mathematical framework of classical crystallography. Traditionally, layered materials are grown on flat substrates; growing Euclidean crystals on non-Euclidean surfaces has rarely been studied. We present a general model describing the growth of layered materials with screw-dislocation spirals on non-Euclidean surfaces and show that it leads to continuously twisted multilayer superstructures. This model is experimentally demonstrated by growing supertwisted spirals of tungsten disulfide (WS2) and tungsten diselenide (WSe2) draped over nanoparticles near the centers of spirals. Microscopic structural analysis shows that the crystal lattice twist is consistent with the geometric twist of the layers, leading to moiré superlattices between the atomic layers.

3.
J Phys Chem Lett ; 11(16): 6551-6559, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32700916

ABSTRACT

Layered two-dimensional Ruddlesden-Popper (RP) halide perovskites are an intriguing class of semiconductors being explored for their linear and nonlinear optical and ferroelectric properties. Second harmonic generation (SHG) is commonly used to screen for noncentrosymmetric and ferroelectric materials. However, SHG measurements of perovskites can be obscured by their intense multiphoton photoluminescence (mPL). Here, we apply multidimensional harmonic generation as a method to eliminate the complications from mPL. By scanning and correlating both excitation and emission frequencies, we unambiguously assess whether a material supports SHG by examining if an emission feature scales as twice the excitation frequency. Measurements of a series of n = 2, 3 RP perovskites reveal that, contrary to previous belief, n-butylammonium (BA) RP perovskites are not SHG-active and thus centrosymmetric, but RP perovskites with phenylethylammonium (PEA) and 2-thiophenemethylammonium (TPMA) spacer cations display SHG. This work establishes multidimensional harmonic generation as a definitive method to measure SHG in halide perovskites.

SELECTION OF CITATIONS
SEARCH DETAIL
...