Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36013718

ABSTRACT

The load-bearing behavior and the performance of composites depends largely on the bond between the individual components. In reinforced concrete construction, the bond mechanisms are very well researched. In the case of carbon and textile reinforced concrete, however, there is still a need for research, especially since there is a greater number of influencing parameters. Depending on the type of fiber, yarn processing, impregnation, geometry, or concrete, the proportion of adhesive, frictional, and shear bond in the total bond resistance varies. In defined profiling of yarns, we see the possibility to increase the share of the shear bond (form fit) compared to yarns with a relatively smooth surface and, through this, to reliably control the bond resistance. In order to investigate the influence of profiling on the bond and tensile behavior, yarns with various profile characteristics as well as different impregnation and consolidation parameters are studied. A newly developed profiling technique is used for creating a defined tetrahedral profile. In the article, we present this approach and the first results from tensile and bond tests as well as micrographic analysis with profiled yarns. The study shows that bond properties of profiled yarns are superior to conventional yarns without profile, and a defined bond modification through variation of the profile geometry as well as the impregnation and consolidation parameters is possible.

2.
Materials (Basel) ; 13(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066353

ABSTRACT

A large number of impact experiments have been carried out at the Technische Universität Dresden in recent years in several research projects. The focus was on reinforced concrete plates on the one hand and on subsequently strengthened reinforced concrete plates on the other hand. Based on these investigations, two fundamental tasks arose: (1) finding an objective description of the damage of components made of steel reinforced concrete that had previously been subjected to an impact load and (2) quantification of the effect of a subsequently applied strengthening layer. In this paper we will focus on both. At first, the experimental conditions and program as well as the used drop tower facility at the Otto Mohr Laboratory of the Technische Universität Dresden are briefly explained. In the summary presentation of the main test results, the focus is on the observed component damage. Based on the observations, an approach for a damage description is presented. To define global damage, the stiffness of the investigated structural components before and after the impact event is used. At the end of the paper, the potential of the method, but also gaps in knowledge and research needs are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...