Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 776(2): 337-9, 1984 Oct 03.
Article in English | MEDLINE | ID: mdl-6477915

ABSTRACT

The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.


Subject(s)
DDT/pharmacology , Electric Conductivity/drug effects , Liver/drug effects , Membrane Potentials/drug effects , Cells, Cultured , Humans , Liver/physiology
2.
Plant Physiol ; 72(2): 368-75, 1983 Jun.
Article in English | MEDLINE | ID: mdl-16663008

ABSTRACT

To measure the cell input resistance in Elodea leaf cells, a new single-microelectrode method was explored by comparing the results with conventional two-microelectrode experiments. The new method takes advantage of the difference in the frequency response curves between electrode and cell impedances. By application of electrical stimuli, which contain specific frequency bands, the different impedances can be analyzed separately. To get a distinct separation in the frequency response of cell and electrode, respectively, the electrode capacitance has to be compensated during the impalement. Different time constants of the cell membrane can be accounted for by adjustment of the stimulus length. It is shown that both the single- and the double-electrode method yield the same results, even if the cell input resistances change considerably during the course of the experiment. This demonstrates the usefulness of the new single-electrode method for continuous measurements of cell membrane resistances, especially in cells so small that the double-electrode method is no longer applicable.

SELECTION OF CITATIONS
SEARCH DETAIL
...