Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(7): 8913-8921, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38335318

ABSTRACT

Mixed-halide perovskites of the composition MAPb(BrxI1-x)3, which seem to exhibit a random and uniform distribution of halide ions in the absence of light, segregate into bromide- and iodide-rich phases under illumination. This phenomenon of halide segregation has been widely investigated in the photovoltaics context since it is detrimental for the material properties and ultimately the device performance of these otherwise very attractive materials. A full understanding of the mechanisms and driving forces has remained elusive. In this work, a study of the crystallization pathways and the mixing behavior during deposition of MAPb(BrxI1-x)3 thin films with varying halide ratios is presented. In situ grazing incidence wide-angle scattering (GIWAXS) reveals the distinct crystallization behavior of mixed-halide perovskite compositions during two different fabrication routes: nitrogen gas-quenching and the lead acetate route. The perovskite phase formation of mixed-halide thin films hints toward a segregation tendency since separate crystallization pathways are observed for iodide- and bromide-rich phases within the mixed compositions. Crystallization of the bromide perovskite phase (MAPbBr3) is already observed during spin coating, while the iodide-based fraction of the composition forms solvent complexes as an intermediate phase, only converting into the perovskite phase upon thermal annealing. These parallel crystallization pathways result in mixed-halide perovskites forming from initially halide-segregated phases only under the influence of heating.

2.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862478

ABSTRACT

We demonstrate a compact sample environment for the in situ study of crystallization kinetics of thin films on synchrotron beamlines, featuring atmospheric control, automated deposition, spin-coating, and annealing stages. The setup is suitable for studying thin film growth in real time using grazing-incidence X-ray diffraction techniques. Humidity and oxygen levels are being detected by sensors. The spinning stage exhibits low vertical oscillation amplitude (∼3µm at speeds up to 10 000 rpm) and can optionally be employed for antisolvent application or gas quenching to investigate the impact of these techniques, which are often used to assist thin film growth. Differential reflectance spectroscopy is implemented in the spin-coater environment for inspecting thin film thickness and optical properties. The infrared radiation-based annealing system consists of a halogen lamp and a holder with an adjustable lamp-to-sample distance, while the sample surface temperature is monitored by a pyrometer. All features of the sample environment can be controlled remotely by the control software at synchrotron beamlines. In order to test and demonstrate the performance, the crystallization pathway of the antisolvent-assisted MAPbI3 (MA = methylammonium) perovskite thin film during the spinning and annealing stages is monitored and discussed.

3.
Adv Sci (Weinh) ; 10(17): e2206325, 2023 06.
Article in English | MEDLINE | ID: mdl-37078840

ABSTRACT

Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2 -xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.

4.
J Colloid Interface Sci ; 598: 430-443, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33930747

ABSTRACT

HYPOTHESIS: Protein adsorption is highly relevant in numerous applications ranging from food processing to medical implants. In this context, it is important to gain a deeper understanding of protein-protein and protein-surface interactions. Thus, the focus of this investigation is on the interplay of bulk properties and surface properties on protein adsorption. It was hypothesised that the type of solvent and ions in solution should significantly influence the protein's bulk and interface behaviour, which has been observed in literature and previous work for other net negatively charged, globular proteins such as bovine serum albumin (BSA). EXPERIMENTS: The phase behaviour of ß-lactoglobulin (BLG) with lanthanum chloride (LaCl3) and iodide (LaI3) in normal water H2O(l) and heavy water (D2O(l)) was established via optical microscopy and ultraviolet-visible spectroscopy. The formation of an adsorption layer and its properties such as thickness, density, structure, and hydration was investigated via neutron reflectivity, quartz-crystal microbalance with dissipation, and infra-red measurements. FINDINGS: ß-lactoglobulin does not show significant anion-induced or isotope-induced effects - neither in bulk nor at the solid-liquid interface, which deviates strongly from the behaviour of bovine serum albumin. We also provide a comprehensive discussion and comparison of protein-specific bulk and interface behaviour between bovine serum albumin and ß-lactoglobulin dependent on anion, cation, solvent, and substrate properties. These findings pave the way for understanding the transition from adsorption to crystallisation.


Subject(s)
Lactoglobulins , Serum Albumin, Bovine , Adsorption , Isotopes , Surface Properties , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...