Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 691: 1328-1352, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31466212

ABSTRACT

Frameworks for limiting ecosystem exposure to excess nutrients and acidity require accurate and complete deposition budgets of reactive nitrogen (Nr). While much progress has been made in developing total Nr deposition budgets for the U.S., current budgets remain limited by key data and knowledge gaps. Analysis of National Atmospheric Deposition Program Total Deposition (NADP/TDep) data illustrates several aspects of current Nr deposition that motivate additional research. Averaged across the continental U.S., dry deposition contributes slightly more (55%) to total deposition than wet deposition and is the dominant process (>90%) over broad areas of the Southwest and other arid regions of the West. Lack of dry deposition measurements imposes a reliance on models, resulting in a much higher degree of uncertainty relative to wet deposition which is routinely measured. As nitrogen oxide (NOx) emissions continue to decline, reduced forms of inorganic nitrogen (NHx = NH3 + NH4+) now contribute >50% of total Nr deposition over large areas of the U.S. Expanded monitoring and additional process-level research are needed to better understand NHx deposition, its contribution to total Nr deposition budgets, and the processes by which reduced N deposits to ecosystems. Urban and suburban areas are hotspots where routine monitoring of oxidized and reduced Nr deposition is needed. Finally, deposition budgets have incomplete information about the speciation of atmospheric nitrogen; monitoring networks do not capture important forms of Nr such as organic nitrogen. Building on these themes, we detail the state of the science of Nr deposition budgets in the U.S. and highlight research priorities to improve deposition budgets in terms of monitoring and flux measurements, leaf- to regional-scale modeling, source apportionment, and characterization of deposition trends and patterns.

2.
Environ Sci Technol ; 52(8): 4668-4675, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29570979

ABSTRACT

Formaldehyde (HCHO) is an important air pollutant from both an atmospheric chemistry and human health standpoint. This study uses an instrumented photochemical Air Quality Model, CMAQ-DDM, to identify the sensitivity of HCHO concentrations across the United States (U.S.) to major source types and hydrocarbon speciation. In July, biogenic sources of hydrocarbons contribute the most (92% of total hydrocarbon sensitivity), split between isoprene and other alkenes. Among anthropogenic sources, mobile sources of hydrocarbons and nitrogen oxides (NO x) dominate. In January, HCHO is more sensitive to anthropogenic hydrocarbons than biogenic sources, especially mobile sources and residential wood combustion (36% of national hydrocarbon sensitivity). While ozone (O3) is three times more sensitive to NO x than hydrocarbons across most areas of the U.S., HCHO is six times more sensitive to hydrocarbons than NO x, largely due to sensitivity to biogenic precursors and the importance of low-NO x chemistry. In winter, both HCHO and O3 show negative sensitivity to NO x (increases with the removal of NO x), although O3 increases are larger. Relative sensitivities do not change substantially across different regions of the country.


Subject(s)
Air Pollutants , Ozone , Environmental Monitoring , Formaldehyde , Humans , Nitrogen Oxides , United States
3.
J Air Waste Manag Assoc ; 50(4): 613-32, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10786013

ABSTRACT

This paper describes a background for the North American Research Strategy for Tropospheric Ozone (NARSTO) cooperative program integrating studies of O3 and PM2.5. It discusses several important aspects for rationalizing NARSTO's trinational investigative approach, including (1) an outlook on the state of knowledge about fine particles in the troposphere and their origins in Canada, Mexico, and the United States; (2) the need for enhancement and strengthening of key field measurements in relation to tropospheric chemistry and a health effects component; and (3) the use of a central theme for advancing air quality modeling using evolving techniques to integrate and guide key process-oriented field campaigns. The importance of organizing a scientific program to acquire "policy-relevant" information is stressed, noting cooperative research directions that address combined PM2.5 and O3 issues, illustrated through exploration of hypothetical pathways of PM2.5 response to choices of O3 and PM precursor emission reductions. The information needed for PM2.5 research is noted to intersect in many cases with those of O3, but diverge in other cases. Accounting for these distinctions is important for developing NARSTO's strategy over the next decade.


Subject(s)
Air Pollution/prevention & control , International Cooperation , Ozone , Policy Making , Humans , North America , Particle Size , Public Health , Public Policy , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...