Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 236(0): 178-190, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35514290

ABSTRACT

A combined high resolution X-ray photoelectron spectroscopy and X-ray standing wave study into the adsorption structure of hydrogenated graphene on Ir(111) is presented. By exploiting the unique absorption profiles and significant modulations in signal intensity found within the X-ray standing wave results, we refine the fitting of the C 1s X-ray photoelectron spectra, allowing us to disentangle the contributions from hydrogenation of graphene in different high-symmetry regions of the moiré supercell. We clearly demonstrate that hydrogenation in the FCC regions results in the formation of a graphane-like structure, giving a standalone component that is separated from the component assigned to the similar structure in the HCP regions. The contribution from dimer structures in the ATOP regions is found to be minor or negligible. This is in contrast to the previous findings where a dimer structure was assumed to contribute significantly to the sp3 part of the C 1s spectra. The corrugation of the remaining pristine parts of the H-graphene is shown to increase with the H coverage, reflecting an increasing number and size of pinning centers of the graphene to the Ir(111) substrate with increasing H exposure.

2.
Nanoscale ; 12(38): 19776-19786, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32966486

ABSTRACT

Interesting electronic properties arise in vertically stacked graphene sheets, some of which can be controlled by mutual orientation of the adjacent layers. In this study, we investigate the MBE grown multilayer graphene on Ir(111) by means of STM, LEED and XPS and we examine the influence of the substrate on the geometric and electronic properties of bilayer graphene by employing XSW and ARPES measurements. We find that the MBE method does not limit the growth to two graphene layers and that the wrinkles, which arise through extended carbon deposition, play a crucial role in the multilayer growth. We also find that the bilayer and trilayer graphene sheets have graphitic-like properties in terms of the separation between the two layers and their stacking. The presence of the iridium substrate imposes a periodic potential induced by the moiré pattern that was found to lead to the formation of replica bands and minigaps in bilayer graphene. From tight-binding fits to our ARPES data we find that band renormalization takes place in multilayer graphene due to a weaker coupling of the upper-most graphene layer to the iridium substrate.

3.
ACS Nano ; 6(12): 10590-7, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23157662

ABSTRACT

We report high-resolution scanning tunneling microscopy and spectroscopy of hydrogenated, quasi-free-standing graphene. For this material, theory has predicted the appearance of a midgap state at the Fermi level, and first angle-resolved photoemission spectroscopy (ARPES) studies have provided evidence for the existence of this state in the long-range electronic structure. However, the spatial extension of H defects, their preferential adsorption patterns on graphene, or local electronic structure are experimentally still largely unexplored. Here, we investigate the shapes and local electronic structure of H impurities that go with the aforementioned midgap state observed in ARPES. Our measurements of the local density of states at hydrogenated patches of graphene reveal a hydrogen impurity state near the Fermi level whose shape depends on the tip position with respect to the center of a patch. In the low H concentration regime, we further observe predominantly single hydrogenation sites as well as extended multiple C-H sites in parallel orientation to the lattice vectors, indicating an adsorption at the same graphene sublattice. This is corroborated by ARPES measurements showing the formation of a dispersionless hydrogen impurity state which is extended over the whole Brillouin zone.

SELECTION OF CITATIONS
SEARCH DETAIL
...