Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 1319, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30899026

ABSTRACT

Attosecond metrology sensitive to sub-optical-cycle electronic and structural dynamics is opening up new avenues for ultrafast spectroscopy of condensed matter. Using intense lightwaves to precisely control the fast carrier dynamics in crystals holds great promise for next-generation petahertz electronics and devices. The carrier dynamics can produce high-order harmonics of the driving field extending up into the extreme-ultraviolet region. Here, we introduce polarization-state-resolved high-harmonic spectroscopy of solids, which provides deeper insights into both electronic and structural sub-cycle dynamics. Performing high-harmonic generation measurements from silicon and quartz, we demonstrate that the polarization states of the harmonics are not only determined by crystal symmetries, but can be dynamically controlled, as a consequence of the intertwined interband and intraband electronic dynamics. We exploit this symmetry-dynamics duality to efficiently generate coherent circularly polarized harmonics from elliptically polarized pulses. Our experimental results are supported by ab-initio simulations, providing evidence for the microscopic origin of the phenomenon.

2.
Anal Bioanal Chem ; 400(3): 691-6, 2011 May.
Article in English | MEDLINE | ID: mdl-21225245

ABSTRACT

For future Li-ion battery applications the search for both new design concepts and materials is necessary. The electrodes of the batteries are always in contact with electrolytes, which are responsible for the transport of Li ions during the charging and discharging process. A broad range of materials is considered for both electrolytes and electrodes so that very different chemical interactions between them can occur, while good cycling behavior can only be obtained for stable solid-electrolyte interfaces. X-ray photoelectron spectroscopy (XPS) was used to study the most relevant interactions between various electrode materials in contact with different electrolyte solutions. It is shown how XPS can provide useful information on reactivities and thus preselect suitable electrode/electrolyte combinations, prior to electrochemical performance tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...