Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
PLoS One ; 18(3): e0282397, 2023.
Article in English | MEDLINE | ID: mdl-37000831

ABSTRACT

This study addresses transpiration in a tropical evergreen mountain forest in the Ecuadorian Andes from the leaf to the stand level, with emphasis on nocturnal plant-water relations. The stand level: Evapotranspiration (ET) measured over 12 months with the Eddy-Covariance (ECov) technique proved as the major share (79%) of water received from precipitation. Irrespective of the humid climate, the vegetation transpired day and night. On average, 15.3% of the total daily ET were due to nocturnal transpiration. Short spells of drought increased daily ET, mainly by enhanced nighttime transpiration. Following leaf transpiration rather than air temperature and atmospheric water vapor deficit, ET showed its maximum already in the morning hours. The tree level: Due to the humid climate, the total water consumption of trees was generally low. Nevertheless, xylem sap flux measurements separated the investigated tree species into a group showing relatively high and another one with low sap flux rates. The leaf level: Transpiration rates of Tapirira guianensis, a member of the high-flux-rate group, were more than twice those of Ocotea aciphylla, a representative of the group showing low sap flux rates. Representatives of the Tapirira group operated at a relatively high leaf water potential but with a considerable diurnal amplitude, while the leaves of the Ocotea group showed low water potential and small diurnal fluctuations. Overall, the Tapirira group performed anisohydrically and the Ocotea group isohydrically. Grouping of the tree species by their water relations complied with the extents of the diurnal stem circumference fluctuations. Nighttime transpiration and hydrological type: In contrast to the isohydrically performing trees of the Ocotea group, the anisohydric trees showed considerable water vapour pressure deficit (VPD)-dependent nocturnal transpiration. Therefore, we conclude that nighttime ET at the forest level is mainly sourced by the tree species with anisohydric performance.


Subject(s)
Rainforest , Trees , Plant Transpiration , Forests , Plant Leaves
2.
Biomolecules ; 11(3)2021 03 18.
Article in English | MEDLINE | ID: mdl-33803875

ABSTRACT

α,ß-unsaturated carbonyls interfere with numerous plant physiological processes. One mechanism of action is their reactivity toward thiols of metabolites like cysteine and glutathione (GSH). This work aimed at better understanding these interactions. Both 12-oxophytodienoic acid (12-OPDA) and abscisic acid (ABA) conjugated with cysteine. It was found that the reactivity of α,ß-unsaturated carbonyls with GSH followed the sequence trans-2-hexenal < 12-OPDA ≈ 12-OPDA-ethylester < 2-cyclopentenone << methyl vinylketone (MVK). Interestingly, GSH, but not ascorbate (vitamin C), supplementation ameliorated the phytotoxic potential of MVK. In addition, 12-OPDA and 12-OPDA-related conjugated carbonyl compounds interacted with proteins, e.g., with members of the thioredoxin (TRX)-fold family. 12-OPDA modified two cysteinyl residues of chloroplast TRX-f1. The OPDAylated TRX-f1 lost its activity to activate the Calvin-Benson-cycle enzyme fructose-1,6-bisphosphatase (FBPase). Finally, we show that 12-OPDA interacts with cyclophilin 20-3 (Cyp20-3) non-covalently and affects its peptidyl-prolyl-cis/trans isomerase activity. The results demonstrate the high potential of 12-OPDA as a diverse interactor and cellular regulator and suggest that OPDAylation may occur in plant cells and should be investigated as novel regulatory mechanism.


Subject(s)
Antioxidants/chemistry , Fatty Acids, Unsaturated/chemistry , Plant Growth Regulators/chemistry , Sulfhydryl Compounds/chemistry , Arabidopsis/chemistry , Cysteine/chemistry , Thioredoxins/chemistry
3.
Medicina (Kaunas) ; 57(4)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921654

ABSTRACT

Background and Objectives: The aetiology and pathomechanism of fibromyalgia syndrome 12 (FMS) as one of chronic pain syndromes still need to be further elucidated. Mitogen-activated protein kinase (MAPK) pathway has been proposed as a novel approach in pain management. Since the major symptom of fibromyalgia syndrome (FMS) patients is pain, it became of interest whether MAPK pathways, such as the stress-activated p38 MAPK/MK2 axis, are activated in FMS patients. Therefore, this study aimed at determining p38 MAPK/MK2 in FMS patients. Materials and Methods: Phosphorylation of MAPK-activated protein kinases 2 (MK2), a direct target of p38 MAPK, was measured in monocytes of FMS and healthy controls (HCs) to monitor the activity of this pathway. Results: The mean level of phosphorylated MK2 was fivefold higher in FMS patients as compared to HCs (p < 0.001). Subgroup analysis revealed that antidepressants did not influence the activity of MK2 in FMS patients. Conclusions: This result indicates that the p38/MK2 pathway could be involved in the pathomechanism of FMS, could act as a clinical marker for FMS, and could be a possible target for pain management in FMS patients.


Subject(s)
Fibromyalgia , Monocytes , Humans , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , p38 Mitogen-Activated Protein Kinases
4.
Antioxid Redox Signal ; 34(13): 1025-1047, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32620064

ABSTRACT

Significance: The importance of oxidoreductases in energy metabolism together with the occurrence of enzymes of central metabolism in the nucleus gave rise to the active research field aiming to understand moonlighting enzymes that undergo post-translational modifications (PTMs) before carrying out new tasks. Recent Advances: Cytosolic enzymes were shown to induce gene transcription after PTM and concomitant translocation to the nucleus. Changed properties of the oxidized forms of cytosolic glyceraldehyde 3-phosphate dehydrogenase, and also malate dehydrogenases and others, are the basis for a hypothesis suggesting moonlighting functions that directly link energy metabolism to adaptive responses required for maintenance of redox-homeostasis in all eukaryotes. Critical Issues: Small molecules, such as metabolic intermediates, coenzymes, or reduced glutathione, were shown to fine-tune the redox switches, interlinking redox state, metabolism, and induction of new functions via nuclear gene expression. The cytosol with its metabolic enzymes connecting energy fluxes between the various cell compartments can be seen as a hub for redox signaling, integrating the different signals for graded and directed responses in stressful situations. Future Directions: Enzymes of central metabolism were shown to interact with p53 or the assumed plant homologue suppressor of gamma response 1 (SOG1), an NAM, ATAF, and CUC transcription factor involved in the stress response upon ultraviolet exposure. Metabolic enzymes serve as sensors for imbalances, their inhibition leading to changed energy metabolism, and the adoption of transcriptional coactivator activities. Depending on the intensity of the impact, rerouting of energy metabolism, proliferation, DNA repair, cell cycle arrest, immune responses, or cell death will be induced. Antioxid. Redox Signal. 34, 1025-1047.


Subject(s)
Energy Metabolism/genetics , Metabolic Networks and Pathways/genetics , Oxidoreductases/metabolism , Plants/metabolism , Animals , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation/genetics , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/genetics , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/metabolism , Homeostasis/genetics , Humans , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Plants/genetics , Protein Processing, Post-Translational/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Biochem J ; 477(19): 3673-3693, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32897311

ABSTRACT

In yeast and animal cells, mitochondrial disturbances resulting from imbalances in the respiratory chain require malate dehydrogenase (MDH) activities for re-directing fluxes of reducing equivalents. In plants, in addition to mitochondria, plastids use malate valves to counterbalance and maintain redox-homeostasis. Arabidopsis expresses three cytosolic MDH isoforms, namely cyMDH1, cyMDH2, and cyMDH3, the latter possessing an N-terminal extension carrying a unique cysteine residue C2. In this study, redox-effects on activity and structure of all three cyMDH isoforms were analyzed in vitro. cyMDH1 and cyMDH2 were reversibly inactivated by diamide treatment, accompanied by dimerization via disulfide-bridge formation. In contrast, cyMDH3 forms dimers and higher oligomers upon oxidation, but its low specific activity is redox-independent. In the presence of glutathione, cyMDH1 and cyMDH2 are protected from dimerization and inactivation. In contrast, cyMDH3 still dimerizes but does not form oligomers any longer. From analyses of single and double cysteine mutants and structural modeling of cyMDH3, we conclude that the presence of C2 and C336 allows for multiple cross-links in the higher molecular mass complexes comprising disulfides within the dimer as well as between monomers of two different dimers. Furthermore, nuclear localization of cyMDH isoforms was significantly increased under oxidizing conditions in isolated Arabidopsis protoplasts, in particular of isoform cyMDH3. The unique cyMDH3 C2-C2-linked dimer is, therefore, a good candidate as a redox-sensor taking over moonlighting functions upon disturbances of energy metabolism, as shown previously for the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) where oxidative modification of the sensitive catalytic cysteine residues induces nuclear translocation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Energy Metabolism , Malate Dehydrogenase/metabolism , Protein Multimerization , Signal Transduction , Amino Acid Substitution , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Malate Dehydrogenase/genetics , Mutation, Missense , Oxidation-Reduction
6.
Plant Physiol ; 184(2): 676-692, 2020 10.
Article in English | MEDLINE | ID: mdl-32826321

ABSTRACT

Heat stress induces misfolding and aggregation of proteins unless they are guarded by chaperone systems. Here, we examined the function of the glutaredoxin GRXS17, a member of thiol reductase families in the model plant Arabidopsis (Arabidopsis thaliana). GRXS17 is a nucleocytosolic monothiol glutaredoxin consisting of an N-terminal thioredoxin domain and three CGFS active-site motif-containing GRX domains that coordinate three iron-sulfur (Fe-S) clusters in a glutathione-dependent manner. As an Fe-S cluster-charged holoenzyme, GRXS17 is likely involved in the maturation of cytosolic and nuclear Fe-S proteins. In addition to its role in cluster biogenesis, GRXS17 presented both foldase and redox-dependent holdase activities. Oxidative stress in combination with heat stress induced loss of its Fe-S clusters followed by subsequent formation of disulfide bonds between conserved active-site cysteines in the corresponding thioredoxin domains. This oxidation led to a shift of GRXS17 to a high-molecular-weight complex and thus activated its holdase activity in vitro. Moreover, GRXS17 was specifically involved in plant tolerance to moderate high temperature and protected root meristematic cells from heat-induced cell death. Finally, GRXS17 interacted with a different set of proteins upon heat stress, possibly protecting them from heat injuries. Therefore, we propose that the Fe-S cluster enzyme GRXS17 is an essential guard that protects proteins against moderate heat stress, likely through a redox-dependent chaperone activity. We reveal the mechanism of an Fe-S cluster-dependent activity shift that converts the holoenzyme GRXS17 into a holdase, thereby preventing damage caused by heat stress.


Subject(s)
Arabidopsis Proteins/metabolism , Glutaredoxins/metabolism , Heat-Shock Response , Oxidative Stress , Thermotolerance , Arabidopsis , Arabidopsis Proteins/genetics , Glutaredoxins/genetics , Polymerization
7.
PeerJ ; 8: e9226, 2020.
Article in English | MEDLINE | ID: mdl-32587795

ABSTRACT

In the vineyards of Rhineland-Palatinate (Germany), two different types of Shepherd's Purse (Capsella bursa-pastoris) coexist: (1) the common type called 'wild type', and (2) the decandric type called Capsella apetala or 'Spe' with four stamens in place of the four petals. In this study, we compare the anatomical and physiological characters of rosette leaves of the respective types. Progeny of individual plants was cultivated in growth chambers under low- and high-light conditions. Under low-light conditions, the stomata densities of the adaxial and abaxial epidermis did not differ between the two types. When grown under high-light conditions, wild type and Spe, both exhibited increased stomata densities compared to low-light conditions, but Spe to a lesser extent than the wild type. The maximal photosynthetic capacity of Spe was lower in both, low-light and high-light conditions compared to wild-type plants. Under all CO2 concentrations, Spe seemed to be less productive. The less effective CO2 assimilation of the Spe mutant C. apetala was accompanied by later flowering. This fact prolonged the vegetative phase of Spe by about two weeks and was sufficient for the maintenance of both populations stably over years.

8.
Microorganisms ; 8(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283834

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme of the oxidative part of the pentose phosphate pathway and serves as the major source of NADPH for metabolic reactions and oxidative stress response in pro- and eukaryotic cells. We here report on a strain of the model yeast Saccharomyces cerevisiae which lacks the G6PD-encoding ZWF1 gene and displays distinct growth retardation on rich and synthetic media, as well as a strongly reduced chronological lifespan. This strain was used as a recipient to introduce plasmid-encoded heterologous G6PD genes, synthesized in the yeast codon usage and expressed under the control of the native PFK2 promotor. Complementation of the hypersensitivity of the zwf1 mutant towards hydrogen peroxide to different degrees was observed for the genes from humans (HsG6PD1), the milk yeast Kluyveromyces lactis (KlZWF1), the bacteria Escherichia coli (EcZWF1) and Leuconostoc mesenteroides (LmZWF1), as well as the genes encoding three different plant G6PD isoforms from Arabidopsis thaliana (AtG6PD1, AtG6PD5, AtG6PD6). The plastidic AtG6PD1 isoform retained its redox-sensitive activity when produced in the yeast as a cytosolic enzyme, demonstrating the suitability of this host for determination of its physiological properties. Mutations precluding the formation of a disulfide bridge in AtG6PD1 abolished its redox-sensitivity but improved its capacity to complement the yeast zwf1 deletion. Given the importance of G6PD in human diseases and plant growth, this heterologous expression system offers a broad range of applications.

9.
BMC Med ; 18(1): 8, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31959160

ABSTRACT

BACKGROUND: Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. METHODS: To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors. Analyses of mouse muscles and myocytes were used to test if interactions are conserved in vertebrates. RESULTS: The muscle-specific Dg complexome revealed novel components that influence the efficiency of Dg function in the muscles. We identified the closest human homologs for Dg-interacting partners, determined their significant enrichment in disease-associations, and verified some of the newly identified Dg interactions. We found that Dg associates with two components of the mechanosignaling Hippo pathway: the WW domain-containing proteins Kibra and Yorkie. Importantly, this conserved interaction manages adult muscle size and integrity. CONCLUSIONS: The results presented in this study provide a new list of muscle-specific Dg interactors, further analysis of which could aid not only in the diagnosis of muscular dystrophies, but also in the development of new therapeutics. To regulate muscle fitness during aging and disease, Dg associates with Kibra and Yorkie and acts as a transmembrane Hippo signaling receptor that transmits extracellular information to intracellular signaling cascades, regulating muscle gene expression.


Subject(s)
Drosophila Proteins/metabolism , Dystroglycans/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Muscular Atrophy/metabolism , Muscular Dystrophies/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Aging/metabolism , Animals , Disease Models, Animal , Drosophila , Dystroglycans/genetics , Female , Male , Mass Spectrometry , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Mutation , Protein Interaction Maps
10.
J Clin Endocrinol Metab ; 104(11): 5238-5248, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30942862

ABSTRACT

CONTEXT: Aging is a primary risk factor for most chronic diseases, including type 2 diabetes. Both exercise and hypoxia regulate pathways that ameliorate age-associated metabolic muscle dysfunction. OBJECTIVE: We hypothesized that the combination of hypoxia and exercise would be more effective in improving glucose metabolism than normoxia exercise. DESIGN AND PARTICIPANTS: We randomized 29 older sedentary individuals (62 ± 6 years; 14 women, 15 men) to bicycle exercise under normobaric hypoxia (fraction of inspired oxygen = 15%) or normoxia (fraction of inspired oxygen = 21%). INTERVENTION: Participants trained thrice weekly for 30 to 40 minutes over 8 weeks at a heart rate corresponding to 60% to 70% of peak oxygen update. MAIN OUTCOME MEASURES: Insulin sensitivity measured by hyperinsulinemic-euglycemic glucose clamp and muscle protein expression before and after hyperinsulinemic-euglycemic glucose clamp. RESULTS: Heart rate and perceived exertion during training were similar between groups, with lower oxygen saturation when exercising under hypoxia (88.7 ± 1.5 vs 96.2 ± 1.2%, P < 0.01). Glucose infusion rate after 8 weeks increased in both the hypoxia (5.7 ± 1.1 to 6.7 ± 1.3 mg/min/kg; P < 0.01) and the normoxia group (6.2 ± 2.1 to 6.8 ± 2.1 mg/min/kg; P = 0.04), with a mean difference between groups of -0.44 mg/min/kg; 95% CI, -1.22 to 0.34; (P = 0.25). Markers of mitochondrial content and oxidative capacity in skeletal muscle were similar after training in both groups. Changes in Akt phosphorylation and glucose transporter 4 under fasting and insulin-stimulated conditions were not different between groups over time. CONCLUSIONS: Eight weeks of hypoxia endurance training led to similar changes in insulin sensitivity and markers of oxidative metabolism compared with normoxia training. Normobaric hypoxia exercise did not enhance metabolic effects in sedentary older women and men beyond exercise alone.


Subject(s)
Blood Glucose/metabolism , Exercise , Hypoxia/metabolism , Aged , Electron Transport , Female , Glucose Clamp Technique , Heart Rate , Humans , Insulin Resistance , Male , Middle Aged , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Prospective Studies
11.
Photosynth Res ; 139(1-3): 81-91, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30203365

ABSTRACT

Plants depend on light energy for the generation of ATP and reductant as well as on supply of nutrients (inorganic C, N, and S compounds) to successfully produce biomass. Any excess of reducing power or lack of electron acceptors can lead to the formation of reactive oxygen species (ROS). Multiple systems are operating to avoid imbalances and subsequent oxidative stress by efficiently scavenging any formed ROS. Plants can sense an upcoming imbalance and correspondingly adapt to changed conditions not only by an increase of ROS scavengers, but also by using excess incoming light energy productively for assimilatory processes in actively metabolizing cells of growing leaves. CO2 assimilation in chloroplasts is controlled by various redox-regulated enzymes; their activation state is strictly linked to metabolism due to the effects of small molecules on their actual activation state. Shuttle systems for indirect transfer of reducing equivalents and ATP specifically distribute the energy fluxes between compartments for optimal biomass production. Integration of metabolic and redox signals involves the cytosolic enzyme glyceraldehyde-3-P dehydrogenase (GapC) and some of its many moonlighting functions. Its redox- and metabolite-dependent interactions with the mitochondrial outer membrane, the cytoskeleton, and its occurrence in the nucleus are examples of these additional functions. Induction of the genes required to achieve an optimal response suitable for the respective conditions allows for growth when plants are exposed to different light intensities and nutrient conditions with varying rates of energy input and different assimilatory pathways for its consumption are the required in the long term. A plant-specific respiratory pathway, the alternative oxidase (AOX), functions as a site to convert excess electrons into heat. For acclimation, any imbalance is sensed and elicits signal transduction to induce the required genes. Examples for regulated steps in this sequence of events are given in this review. Continuous adjustment under natural conditions allows for adaptive responses. In contrast, sudden light stress, as employed when analyzing stress responses in lab experiments, frequently results in cell destruction. Knowledge of all the flexible regulatory mechanisms, their responsiveness, and their interdependencies is needed when plant growth is to be engineered to optimize biomass and production of any desired molecules.


Subject(s)
Plant Cells/metabolism , Energy Metabolism/physiology , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Photosynthesis/physiology , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism
12.
Proc Natl Acad Sci U S A ; 115(51): E12111-E12120, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30514818

ABSTRACT

Iron chronically limits aquatic photosynthesis, especially in marine environments, and the correct perception and maintenance of iron homeostasis in photosynthetic bacteria, including cyanobacteria, is therefore of global significance. Multiple adaptive mechanisms, responsive promoters, and posttranscriptional regulators have been identified, which allow cyanobacteria to respond to changing iron concentrations. However, many factors remain unclear, in particular, how iron status is perceived within the cell. Here we describe a cyanobacterial ferredoxin (Fed2), with a unique C-terminal extension, that acts as a player in iron perception. Fed2 homologs are highly conserved in photosynthetic organisms from cyanobacteria to higher plants, and, although they belong to the plant type ferredoxin family of [2Fe-2S] photosynthetic electron carriers, they are not involved in photosynthetic electron transport. As deletion of fed2 appears lethal, we developed a C-terminal truncation system to attenuate protein function. Disturbed Fed2 function resulted in decreased chlorophyll accumulation, and this was exaggerated in iron-depleted medium, where different truncations led to either exaggerated or weaker responses to low iron. Despite this, iron concentrations remained the same, or were elevated in all truncation mutants. Further analysis established that, when Fed2 function was perturbed, the classical iron limitation marker IsiA failed to accumulate at transcript and protein levels. By contrast, abundance of IsiB, which shares an operon with isiA, was unaffected by loss of Fed2 function, pinpointing the site of Fed2 action in iron perception to the level of posttranscriptional regulation.


Subject(s)
Ferredoxins/physiology , Iron/metabolism , Photosynthesis/physiology , Synechocystis/physiology , Adaptation, Physiological , Chlorophyll/metabolism , Ferredoxins/chemistry , Ferredoxins/metabolism , Homeostasis/genetics , Synechocystis/genetics , Synechocystis/metabolism
13.
BMC Plant Biol ; 18(1): 184, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30189844

ABSTRACT

BACKGROUND: Plant cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GapC) displays redox-dependent changes in its subcellular localizations and activity. Apart from its fundamental role in glycolysis, it also exhibits moonlighting properties. Since the exceptional redox-sensitivity of GapC has been suggested to play a crucial role in its various functions, we here studied its redox-dependent subcellular localization and the influence of the redox-state on GapC protein interactions. RESULTS: In mesophyll protoplasts from Arabidopsis thaliana, colocalization of GapC with mitochondria was more pronounced under reducing conditions than upon oxidative stress. In accordance, reduced GapC showed an increased affinity to the mitochondrial voltage-dependent anion-selective channel (VDAC) compared to the oxidized one. On the other hand, nuclear localization of GapC was increased under oxidizing conditions. The essential role of the catalytic cysteine for nuclear translocation was shown by using the corresponding cysteine mutants. Furthermore, interaction of GapC with the thioredoxin Trx-h3 as a candidate to revert the redox-modifications, occurred in the nucleus of oxidized protoplasts. In a yeast complementation assay, we could demonstrate that the plant-specific non-phosphorylating glyceraldehyde 3-P dehydrogenase (GapN) can substitute for glucose 6-P dehydrogenase to generate NADPH for re-reduction of the Trx system and ROS defense. CONCLUSIONS: The preferred association of reduced, glycolytically active GapC with VDAC suggests a substrate-channeling metabolon at the mitochondrial surface for efficient energy generation. Increased occurrence of oxidized GapC in the nucleus points to a function in signal transduction and gene expression. Furthermore, the interaction of GapC with Trx-h3 in the nucleus indicates reversal of the oxidative cysteine modification after re-establishment of cellular homeostasis. Both, energy metabolism and signal transfer for long-term adjustment and protection from redox-imbalances are mediated by the various functions of GapC. The molecular properties of GapC as a redox-switch are key to its multiple roles in orchestrating energy metabolism.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytosol/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cysteine/metabolism , Energy Metabolism , Genetic Complementation Test , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Mitochondria/metabolism , Mutation , Oxidation-Reduction , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Thioredoxins/metabolism , Voltage-Dependent Anion Channels/metabolism
14.
PLoS One ; 13(8): e0202255, 2018.
Article in English | MEDLINE | ID: mdl-30102718

ABSTRACT

In tropical agriculture, the vigorously growing Bracken fern causes severe problems by invading pastures and out-competing the common pasture grasses. Due to infestation by that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodiversity-rich tropical forest is progressively cleared for new grazing areas. Here we present a broad physiological comparison of the two plant species that are the main competitors on the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata and the weed Bracken (Pteridium arachnoideum). With increasing elevation, the competitive power of Bracken increases as shown by satellite data of the study region. Using data obtained from field measurements, the annual biomass production of both plant species, as a measure of their competitive strength, was modeled over an elevational gradient from 1800 to 2800 m. The model shows that with increasing elevation, biomass production of the two species shifts in favor of Bracken which, above 1800 m, is capable of outgrowing the grass. In greenhouse experiments, the effects on plant growth of the presumed key variables of the elevational gradient, temperature and UV radiation, were separately analyzed. Low temperature, as well as UV irradiation, inhibited carbon uptake of the C4-grass more than that of the C3-plant Bracken. The less temperature-sensitive photosynthesis of Bracken and its effective protection from UV radiation contribute to the success of the weed on the highland pastures. In field samples of Bracken but not of Setaria, the content of flavonoids as UV-scavengers increased with the elevation. Combining modeling with measurements in greenhouse and field allowed to explain the invasive growth of a common weed in upland pastures. The performance of Setaria decreases with elevation due to suboptimal photosynthesis at lower temperatures and the inability to adapt its cellular UV screen.


Subject(s)
Altitude , Introduced Species , Pteridium/growth & development , Setaria Plant/growth & development , Agriculture , Biomass , Coumaric Acids , Ecuador , Photosynthesis , Plant Weeds , Pteridium/chemistry , Pteridium/radiation effects , Setaria Plant/chemistry , Setaria Plant/radiation effects , Temperature , Tyramine/analogs & derivatives , Ultraviolet Rays
15.
Trends Plant Sci ; 23(9): 769-782, 2018 09.
Article in English | MEDLINE | ID: mdl-30149854

ABSTRACT

Oxygenic photosynthesis gave rise to a regulatory mechanism based on reversible redox-modifications of enzymes. In chloroplasts, such on-off switches separate metabolic pathways to avoid futile cycles. During illumination, the redox interconversions allow for rapidly and finely adjusting activation states of redox-regulated enzymes. Noncovalent effects by metabolites binding to these enzymes, here addressed as 'small molecules', affect the rates of reduction and oxidation. The chloroplast enzymes provide an example for a versatile regulatory principle where small molecules govern thiol switches to integrate redox state and metabolism for an appropriate response to environmental challenges. In general, this principle can be transferred to reactive thiols involved in redox signaling, oxidative stress responses, and in disease of all organisms.


Subject(s)
Chloroplasts/metabolism , Oxygen/metabolism , Signal Transduction , Sulfhydryl Compounds/metabolism , Oxidation-Reduction , Oxidative Stress , Photosynthesis
16.
Trends Plant Sci ; 23(7): 588-597, 2018 07.
Article in English | MEDLINE | ID: mdl-29665989

ABSTRACT

The alternative pathway of mitochondrial electron transport, which terminates in the alternative oxidase (AOX), uncouples oxidation of substrate from mitochondrial ATP production, yet plant performance is improved under adverse growth conditions. AOX is regulated at different levels. Identification of regulatory transcription factors shows that Arabidopsis thaliana AOX1a is under strong transcriptional suppression. At the protein level, the primary structure is not optimised for activity. Maximal activity requires the presence of various metabolites, such as tricarboxylic acid-cycle intermediates that act in an isoform-specific manner. In this opinion article we propose that the regulatory mechanisms that keep AOX activity suppressed, at both the gene and protein level, are positive for plant performance due to the flexible short- and long-term fine-tuning.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Mitochondrial Proteins/genetics , Oxidoreductases/genetics , Photosynthesis/genetics , Photosynthesis/physiology , Plant Proteins/genetics
17.
AoB Plants ; 10(1): ply005, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29479407

ABSTRACT

For almost 100 years now, ecotypic differentiation of plant species has been a major topic of research. In changing environments, the question needs to be answered as to how long it takes to adapt, and which parameters are subject to this fast adaptation. Short-living colonizing plant species are excellent examples, especially when they are selfing. Shepherd's Purse Capsella bursa-pastoris (Brassicaceae) is one of the most wide-spread flowering species on earth and avoids only the hot and humid tropics. Many studies demonstrated the ecotypic differentiation of C. bursa-pastoris in various regions of the world but ecotypic differentiation regarding adaptability of anatomy and physiology of rosette leaves so far remained less recognized. However, the leaves are relevant for subsequent seed set; in particular, winter-annual accessions require a robust rosette to survive adverse conditions. Leaf-related traits such as the thickness of the mesophyll and epidermis, stomatal density, photosynthetic capacity and the ability to withstand and even use high light conditions were therefore analysed in provenances from various climatic zones. Photosynthetic capacity depends on leaf anatomy and cellular physiological parameters. In particular, the ability to dynamically adjust the photosynthetic capacity to changing environmental conditions results in higher fitness. Here, we attempt to relate these results to the four Mendelian leaf types according to Shull.

18.
Plant Physiol ; 176(2): 1423-1432, 2018 02.
Article in English | MEDLINE | ID: mdl-29208641

ABSTRACT

The cyanide-insensitive alternative oxidase (AOX) is a non-proton-pumping ubiquinol oxidase that catalyzes the reduction of oxygen to water and is posttranslationally regulated by redox mechanisms and 2-oxo acids. Arabidopsis (Arabidopsis thaliana) possesses five AOX isoforms (AOX1A-AOX1D and AOX2). AOX1D expression is increased in aox1a knockout mutants from Arabidopsis (especially after restriction of the cytochrome c pathway) but cannot compensate for the lack of AOX1A, suggesting a difference in the regulation of these isoforms. Therefore, we analyzed the different AOX isoenzymes with the aim to identify differences in their posttranslational regulation. Seven tricarboxylic acid cycle intermediates (citrate, isocitrate, 2-oxoglutarate, succinate, fumarate, malate, and oxaloacetate) were tested for their influence on AOX1A, AOX1C, and AOX1D wild-type protein activity using a refined in vitro system. AOX1C is insensitive to all seven organic acids, AOX1A and AOX1D are both activated by 2-oxoglutarate, but only AOX1A is additionally activated by oxaloacetate. Furthermore, AOX isoforms cannot be transformed to mimic one another by substituting the variable cysteine residues at position III in the protein. In summary, we show that AOX isoforms from Arabidopsis are differentially fine-regulated by tricarboxylic acid cycle metabolites (most likely depending on the amino-terminal region around the highly conserved cysteine residues known to be involved in regulation by the 2-oxo acids pyruvate and glyoxylate) and propose that this is the main reason why they cannot functionally compensate for each other.


Subject(s)
Citric Acid Cycle/physiology , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Amino Acid Substitution , Citric Acid/metabolism , Cysteine/genetics , Enzyme Activation , Escherichia coli/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Ketoglutaric Acids/metabolism , Malates/metabolism , Mitochondrial Proteins/genetics , Oxaloacetic Acid/metabolism , Oxidoreductases/genetics , Plant Proteins/genetics
19.
Plant Physiol ; 174(4): 2113-2127, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28596420

ABSTRACT

Mitochondrial alternative oxidase (AOX) in plants is a non-proton-motive ubiquinol oxidase that is activated by redox mechanisms and 2-oxo acids. A comparative analysis of the AOX isoenzymes AOX1A, AOX1C, and AOX1D from Arabidopsis (Arabidopsis thaliana) revealed that cysteine residues, CysI and CysII, are both involved in 2-oxo acid activation, with AOX1A activity being more increased by 2-oxo acids than that of AOX1C and AOX1D. Substitution of cysteine in AOX1A by glutamate mimicked its activation by pyruvate or glyoxylate, but not in AOX1C and AOX1D. CysIII, only present in AOX1A, is not involved in activation by reduction or metabolites, but substitutions at this position affected activity. AOX1A carrying a serine residue at position CysI was activated by succinate, while correspondingly substituted variants of AOX1C and AOX1D were insensitive. Activation by glutamate at CysI and CysII is consistent with the formation of the thiohemiacetal, while succinate activation after changing CysI to serine suggests hemiacetal formation. Surprisingly, in AOX1A, replacement of CysI by alanine, which cannot form a (thio)hemiacetal, led to even higher activities, pointing to an alternative mechanism of activation. Taken together, our results demonstrate that AOX isoforms are differentially activated and that activation at CysI and CysII is additive.


Subject(s)
Arabidopsis Proteins/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Protein Processing, Post-Translational , Amino Acid Substitution/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Carboxylic Acids/metabolism , Conserved Sequence , Cysteine/genetics , Isoenzymes/chemistry , Isoenzymes/metabolism , Mitochondrial Proteins/chemistry , Oxidoreductases/chemistry , Plant Proteins/chemistry , Sequence Alignment
20.
Plant Cell Physiol ; 58(6): 983-992, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28444344

ABSTRACT

Hydrogen sulfide is an important signaling molecule comparable with nitric oxide and hydrogen peroxide in plants. The underlying mechanism of its action is unknown, although it has been proposed to be S-sulfhydration. This post-translational modification converts the thiol groups of cysteines within proteins to persulfides, resulting in functional changes of the proteins. In Arabidopsis thaliana, S-sulfhydrated proteins have been identified, including the cytosolic isoforms of glyceraldehyde-3-phosphate dehydrogenase GapC1 and GapC2. In this work, we studied the regulation of sulfide on the subcellular localization of these proteins using two different approaches. We generated GapC1-green fluorescent protein (GFP) and GapC2-GFP transgenic plants in both the wild type and the des1 mutant defective in the l-cysteine desulfhydrase DES1, responsible for the generation of sulfide in the cytosol. The GFP signal was detected in the cytoplasm and the nucleus of epidermal cells, although with reduced nuclear localization in des1 compared with the wild type, and exogenous sulfide treatment resulted in similar signals in nuclei in both backgrounds. The second approach consisted of the immunoblot analysis of the GapC endogenous proteins in enriched nuclear and cytosolic protein extracts, and similar results were obtained. A significant reduction in the total amount of GapC in des1 in comparison with the wild type was determined and exogenous sulfide significantly increased the protein levels in the nuclei in both plants, with a stronger response in the wild type. Moreover, the presence of an S-sulfhydrated cysteine residue on GapC1 was demonstrated by mass spectrometry. We conclude that sulfide enhances the nuclear localization of glyceraldehyde-3-phosphate dehydrogenase.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/enzymology , Cell Nucleus/enzymology , Cytosol/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Hydrogen Sulfide/pharmacology , Arabidopsis Proteins/metabolism , Cell Nucleus/drug effects , Cytosol/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mass Spectrometry , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...