Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 58(8): 2360-2364, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30570814

ABSTRACT

The chemical or physical control parameters for the onset of superconductivity in MB2 C2 hetero-graphene materials are unclear. This is mainly due to the almost ubiquitous positional B/C disorder, rendering the description of real structures of borocarbides into one of the most challenging problems in materials science. We will show that high-resolution X-ray diffraction data provides all the essential information to decode even complex coloring problems due to B/C disorder. Electron density studies and subsequent analyses of the fine structure of the Laplacian of the electron density resolves the local electronic structure of ScB2 C2 at sub-atomic resolution and allows for an unequivocal identification of all atoms involved in the coloring scenario. This information could finally be used to identify the electron deficient character of the B/C layers in ScB2 C2 and to synthesize the first bimetallic hetero-metallocene with lithium and scandium atoms embedded in the pentagonal and heptagonal voids, respectively.

2.
Angew Chem Int Ed Engl ; 57(30): 9310-9314, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29847000

ABSTRACT

The synthesis and structural characterization of the hitherto unknown parent Co(bz)2+ (bz=benzene) complex and several of its derivatives are described. Their synthesis starts either from a CoCO5+ salt, or directly from Co2 (CO)8 and a Ag+ salt. Stability and solubility of these complexes was achieved by using the weakly coordinating anions (WCAs) [Al(ORF )4 ]- and [F{Al(ORF )3 }2 ]- {RF =C(CF3 )3 } and the solvent ortho-difluorobenzene (o-DFB). The magnetic properties of Co(bz)2+ were measured and compared in the condensed and gas phases. The weakly bound Co(o-dfb)2+ salts are of particular interest for the preparation of further CoI salts, for example, the structurally characterized low-coordinate 12 valence electron Co(Pt Bu3 )2+ and Co(NHC)2+ salts.

3.
Chemistry ; 24(4): 918-927, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29155467

ABSTRACT

The recently published purely metallo-organic NiI salt [Ni(cod)2 ][Al(ORF )4 ] (1, cod=1,5-cyclooctadiene, RF =C(CF3 )3 ) provides a starting point for a new synthesis strategy leading to NiI phosphine complexes, replacing cod ligands by phosphines. Clearly visible colour changes indicate reactions within minutes, while quantum chemical calculations (PBE0-D3(BJ)/def2-TZVPP) approve exergonic reaction enthalpies in all performed ligand exchange reactions. Hence, [Ni(dppp)2 ][Al(ORF )4 ] (2, dppp=1,3-bis(diphenylphosphino)propane), [Ni(dppe)2 ][Al(ORF )4 ] (3, dppe=1,3-bis(diphenyl-phosphino)ethane), three-coordinate [Ni(PPh3 )3 ][Al(ORF )4 ] (4) and a remarkable two-coordinate NiI phosphine complex [Ni(PtBu3 )2 ][Al(ORF )4 ] (5) were characterised by single crystal X-ray structure analysis. EPR studies were performed, confirming a nickel d9 -configuration in complexes 2, 4 and 5. This result is supported by additional magnetization measurements of 4 and 5. Further investigations by cyclic voltammetry indicate relatively high oxidation potentials for these NiI compounds between 0.7 and 1.7 V versus Fc/Fc+ . Screening reactions with O2 and CO gave first insights on the reaction behaviour of the NiI phosphine complexes towards small molecules with formation of mixed phosphine-CO-NiI complexes and oxidation processes yielding new NiI and/or NiII derivatives. Moreover, 4 reacted with CH2 Cl2 at RT to give a dimeric NiII ylide complex (4 c). As CH2 Cl2 is a rather stable alkyl halide with relatively high C-Cl bond energies, 4 appears to be a suitable reagent for more general C-Cl bond activation reactions.

4.
Angew Chem Int Ed Engl ; 54(49): 14706-9, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26458726

ABSTRACT

The straightforward synthesis of the cationic, purely organometallic Ni(I) salt [Ni(cod)2](+)[Al(OR(F))4](-) was realized through a reaction between [Ni(cod)2] and Ag[Al(OR(F))4] (cod = 1,5-cyclooctadiene). Crystal-structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic Ni(I) olefin complex. Weak interactions between the metal center, the ligands, and the anion provide a good starting material for further cationic Ni(I) complexes.


Subject(s)
Nickel/chemistry , Organometallic Compounds/chemistry , Electrochemical Techniques , Ligands , Models, Molecular
5.
J Phys Condens Matter ; 27(7): 075702, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25643644

ABSTRACT

The transition metal carbide superconductor Sc(3)CoC(4) may represent a new benchmark system of quasi-one-dimensional (quasi-1D) superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset T(c) of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the [CoC(4)](∞) ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl(2)Mo(6)Se(6), which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc(3)CoC(4) appears to be even more in the 1D limit than Tl(2)Mo(6)Se(6).

6.
Inorg Chem ; 53(16): 8691-9, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25068601

ABSTRACT

ZnAs was synthesized at 6 GPa and 1273 K utilizing multianvil high-pressure techniques and structurally characterized by single-crystal and powder X-ray diffraction (space group Pbca (No. 61), a = 5.6768(2) Å, b = 7.2796(2) Å, c = 7.5593(2) Å, Z = 8). The compound is isostructural to ZnSb (CdSb type) and displays multicenter bonded rhomboid rings Zn2As2, which are connected to each other by classical two-center, two-electron bonds. At ambient pressure ZnAs is metastable with respect to Zn3As2 and ZnAs2. When heating at a rate of 10 K/min decomposition takes place at ∼700 K. Diffuse reflectance measurements reveal a band gap of 0.9 eV. Electrical resistivity, thermopower, and thermal conductivity were measured in the temperature range of 2-400 K and compared to thermoelectric ZnSb. The room temperature values of the resistivity and thermopower are ∼1 Ω cm and +27 µV/K, respectively. These values are considerably higher and lower, respectively, compared to ZnSb. Above 150 K the thermal conductivity attains low values, around 2 W/m·K, which is similar to that of ZnSb. The heat capacity of ZnAs was measured between 2 and 300 K and partitioned into a Debye and two Einstein contributions with temperatures of θD = 234 K, θE1 = 95 K, and θE2 = 353 K. Heat capacity and thermal conductivity of ZnSb and ZnAs show very similar features, which possibly relates to their common electron-poor bonding properties.

7.
Chemistry ; 20(23): 7048-53, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24740648

ABSTRACT

In this contribution, the solid-state low-temperature phase structure of [2,2]-paracyclophane is unambiguously characterised by single-crystal X-ray analysis. Additionally, a heat capacity measurement was undertaken, which proves the existence of a λ-type phase transition at 45 K, a transition that is connected with the formation of a secondary Cp/T feature at 60 K. The low-temperature phase (<45 K) crystallises in the lower symmetry space group P4n2, whereas the high-temperature phase (>60 K) crystallises in space group P4(2)/mnm. This proves what has been postulated both by experimental and theoretical chemists but has repeatedly been dismissed as speculation many times.

8.
Dalton Trans ; 41(14): 4239-48, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22382728

ABSTRACT

The metal-organic framework [Cu(ta)(2)] (Hta = 1H-1,2,3-triazole), containing Jahn-Teller active Cu(II) ions and 1,2,3-triazolate ligands, is prepared under solvothermal reaction conditions. The compound shows a reversible phase transition from the tetragonal crystal system (α-[Cu(ta)(2)]: space group I4(1)/amd (no. 141), a = 11.8447(7) Å, c = 18.9782(13) Å, V = 2662.6(3) Å(3)) to the cubic crystal system (ß-[Cu(ta)(2)]: space group Fd3m (no. 227), a = 17.4416(15) Å, V = 5305.9(8) Å(3)) within the temperature range of 120-160 °C. Both [Cu(ta)(2)] polymorphs have identical bonding topologies that might be described as fully condensed Kuratowski-type pentanuclear secondary building units of local T(d) point group symmetry in which four Cu(II) ions occupy the vertices of an imaginary tetrahedron. α-[Cu(ta)(2)], as opposed to the high-temperature ß-phase, shows a strong tetragonal Jahn-Teller distortion of CuN(6) coordination octahedra. The compounds are characterized by elemental and thermogravimetric analyses, single crystal and powder X-ray diffraction, FTIR-, UV-vis and fluorescence spectroscopy. Magnetic susceptibility investigations reveal two different Cu(II) sites at a ratio of 1 : 2, in agreement with the solid state structure of [Cu(ta)(2)]. At low temperatures the formation of antiferromagnetically coupled Cu(II) dimers is observed, leading to a spin frustration of roughly 1/3 of all magnetically active Cu(II) sites.

10.
Chemistry ; 16(4): 1336-50, 2010 Jan 25.
Article in English | MEDLINE | ID: mdl-19967729

ABSTRACT

In this work we report on the syntheses and properties of several new Ni complexes featuring the chelating bisguanidines bis(tetramethylguanidino)benzene (btmgb), bis(tetramethylguanidino)naphthalene (btmgn), and bis(tetramethylguanidino)biphenyl (btmgbp) as ligands. All complexes were structurally characterized by single-crystal X-ray diffraction and quantum chemical calculations. A detailed inspection of the magnetic susceptibility of [(btmgb)NiX(2)] and [(btmgbp)NiX(2)] (X=Cl, Br) revealed a linear temperature dependence of chi(-1)(T) above 50 K, which was in agreement with a Curie-Weiss-type behavior and a triplet ground state. Below approximately 25 K, however, magnetic susceptibility studies of the paramagnetic d(8) Ni complexes revealed the presence of a significant zero-field splitting (ZFS) that results from spin-orbit mixing of excited states into the triplet ground state. The electronic consequences that might arise from the mixing of states as well as from a possible non-innocent behavior of the ligand have been explored by an experimental charge density study of [(btmgb)NiCl(2)] at low temperatures (7 K). Here, the presence of ZFS was identified as one potential reason for the flat angle-spherical Cl-Ni-Cl deformation potential and the distinct differences between the angle-spherical X-Ni-X valence angles observed by experiment and predicted by DFT. An analysis of the topology of the experimentally and theoretically derived electron-density distributions of [(btmgb)NiCl(2)] confirmed the strong donor character of the bisguanidine ligand but clearly ruled out any significant non-innocent ligand (NIL) behavior. Hence, [(btmgb)NiCl(2)] provides an experimental reference system to study the mixing of certain excited states into the ground state unbiased from any competing NIL behavior.

11.
Chemistry ; 14(26): 8013-24, 2008.
Article in English | MEDLINE | ID: mdl-18645991

ABSTRACT

The cyano-substituted metallocenes [M(C5H4CN)2] (M=Fe, 1; Co, 2; Ni 3) and [M(C5Me5)(C5H4CN)] (M=Fe, 4; Co, 5; Ni, 6) were synthesized in yields up to 58 % by treating K(C5H4CN) or Tl(C5H4CN) with suitable transition-metal precursors. Cyclic voltammetry indicated that the oxidation and reduction potentials of all the cyanometallocenes were shifted to positive values by up to 0.8 V. Single-crystal X-ray structure analysis showed that 1 had eclipsed ligands, formed planes in the lattice, and--unlike usual metallocenes--lined up in stacks perpendicular to these planes. Powder X-ray studies established that 1 and 2 are isotypic. The 1H and 13C NMR spectra were recorded for all the new compounds. Signal shifts of up to delta=1500 ppm were recorded for the paramagnetic molecules 2 and 3 and were, at a given temperature, strikingly different for solution and solid-state spectra. These results pointed to antiferromagnetic interactions as a consequence of molecular ordering in the lattice, as confirmed by magnetic measurements. The temperature-dependent susceptibilities were reproduced by Heisenberg spin-chain models (H=-J sum n- 1 i=1 SiSi+1), thus yielding J=-28.3 and -10.3 cm(-1) for 2 and 3, respectively, whereas J=-11.8 cm(-1) was obtained for 3 from the Ising spin-chain model. In accordance with molecular orbital (MO) considerations, much spin density was found to be delocalized not only on the cyclopentadienyl ligand but also the cyano substituents. The magnetic interaction was interpreted as a Heitler-London spin exchange and was analyzed based on how the interaction depends on the singly occupied MOs and the shift of parallel metallocenes relative to each other.

12.
Dalton Trans ; (14): 1899-907, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18369497

ABSTRACT

The heterobimetallic peralkylated complexes [Ln(AlR4)2]n (Ln = Sm, Yb; R = Me, Et) were synthesized by a silylamide elimination route from Ln[N(SiMe3)2]2(THF)2 and an excess of AlR3. The solid-state structure of [Sm(AlEt4)2]n is isomorphous to that of the ytterbium derivative. Polymeric [Yb(AlMe4)2]n was examined by 1H and 13C MAS NMR spectroscopy revealing the presence of distinct bridging methyl groups. The reaction of [Yb(AlMe4)2]n and 1,10-phenanthroline (Phen) afforded the monomeric donor adduct Yb(AlMe4)2(Phen), while the protonolysis reaction with 2 equiv. C5Me5H (HCp*) yielded a separated ion pair of composition [Cp*Yb(THF)(4)][AlMe(4)]. Single-crystal X-ray diffraction data are provided for both ytterbium(II) complexes. Solid-state magnetic measurements (SQUID) were performed on [Sm(AlMe4)2]n, [Sm(AlEt4)2]n, SmI2(THF)2 and Sm[N(SiMe3)2]2(THF)2 showing high effective magnetic moments 3.67micro(B) < micro(eff) < 4.43micro(B).


Subject(s)
Aluminum/chemistry , Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Spectroscopy/standards , Models, Molecular , Molecular Conformation , Reference Standards , Stereoisomerism
13.
Chem Commun (Camb) ; (32): 4071-3, 2005 Aug 28.
Article in English | MEDLINE | ID: mdl-16091803

ABSTRACT

Re(x)W(1-x)O3.H2O and Re(x)W(1-x)O3 phases are prepared by a new organometallic chimie douce concept employing the organometallic precursor methyltrioxorhenium.

SELECTION OF CITATIONS
SEARCH DETAIL
...