Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 241: 112130, 2023 04.
Article in English | MEDLINE | ID: mdl-36708627

ABSTRACT

The preparation and molecular structures of two five-coordinate cobalt(II) picket fence porphyrinates with imidazole ligands are described, [Co(TpivPP)(L)] (TpivPP, dianion of picket fence porphyrin). The ligands are the unhindered imidazole, 1-ethylimidazole, and the sterically hindered imidazole, 1,2-dimethylimidazole. Although the equatorial aspects of the geometry are quite equivalent, the axial coordination group geometry strongly reflects the differing steric requirements of the axial ligand. The hindering methyl group in 1,2-dimethylimidazole, adjacent to the coordinated imidazole nitrogen atom, leads to an increased CoNIm bond distance, a tilt of the CoN bond and unequal CoNCIm bond angles, all of which serve to reduce the steric strain when compared with the unhindered derivative.


Subject(s)
Porphyrins , Porphyrins/chemistry , Stereoisomerism , Cobalt/chemistry , Ligands , Imidazoles/chemistry
2.
Inorg Chem ; 57(15): 8788-8795, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30010336

ABSTRACT

Compared to well studied diatomic ligands (NO, CN-, CO), the axial bonds of carbene hemes is much less known although its significance in biological chemistry. The unusually large quadrupole splitting (Δ EQ = +2.2 mm·s-1) and asymmetric parameter (η = 0.9) of the five-coordinate heme carbene [Fe(TTP)(CCl2)], which is the largest among all known low spin ferrohemes, has driven investigations by means of Mössbauer effect Nuclear Resonance Vibrational Spectroscopy (NRVS). Three distinct measurements on one single crystal (two in-plane and one out-of-plane) have demonstrated comprehensive vibrational structures including stretch (429) and bending modes (472 cm-1) of the axial Fe-CCl2, and revealed iron vibrational anisotropy in three orthogonal directions for the first time. Frontier orbital analysis especially comparisons with diatomic analogues (NO, CN-, CO) suggest that CCl2, similar to NO, has led to strong but anisotropic π bonding in a ligand-based "4C"-coordinate which induced the vibrational anisotropies and very large Mössbauer parameters. This is contrasted to CN- and CO complexes which possess a porphyrin-based "4N"-coordinate electronic and vibrational structures due to inherent on-axis linear ligation.


Subject(s)
Carbon Monoxide/chemistry , Cyanides/chemistry , Metalloporphyrins/chemistry , Nitric Oxide/chemistry , Ligands , Models, Chemical , Molecular Structure
3.
Inorg Chem ; 57(9): 5648-5656, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29697973

ABSTRACT

The synthesis and characterization of two new iron(II) porphine complexes is described. Porphine, the simplest porphyrin derivative, has been studied less than other synthetic porphyrins owing to synthetic difficulties and solubility issues. The subjects of this study are two six-coordinate iron(II) species further coordinated by CO and an imidazole ligand (either 1-methylimidazole or 2-methylimidazole). The two species have very different CO stretching frequencies, with the 2-methylimidazole complex having a very low stretching frequency of 1923 cm-1 compared to the more usual 1957 cm-1 for the 1-methylimidazole derivative. The very low frequency is the result of environmental effects; the oxygen atom of the carbonyl forms a hydrogen bond with an adjacent coordinated imidazole with a hydrogen atom from the N-H group. The two species, with their differing C-O stretches, also display substantial differences in the values of the Fe-C and C-O bond distances, as determined by their X-ray structures. The two bond distances are strongly correlated ( R = 0.98) in the direction expected for the classical π-backbonding model. The two bond distances are also strongly correlated with the C-O stretching frequencies. We can conclude that the Fe-C and C-O stretches are quite representative of the observed bond distances; their stretching frequencies are not affected by substantial mode mixing.

4.
Inorg Chem ; 57(2): 793-803, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29281268

ABSTRACT

The influence of hydrogen binding to the N-H group of coordinated imidazole in high-spin iron(II) porphyrinates has been studied. The preparation and characterization of new complexes based on [Fe(TPP)(2-MeHIm)] (TPP is the dianion of tetraphenylporphyrin) are reported. The hydrogen bond acceptors are ethanol, tetramethylene sulfoxide, and 2-methylimidazole. The last acceptor, 2-MeHIm, was found in a crystalline complex with two [Fe(TPP)(2-MeHIm)] sites, only one of which has the 2-methylimidazole hydrogen bond acceptor. This latter complex has been studied by temperature-dependent Mössbauer spectroscopy. All new complexes have also been characterized by X-ray structure determinations. The Fe-NP and Fe-NIm bond lengths, and displacement of the Fe atom out of the porphyrin plane are similar to, but marginally different than, those in imidazole-ligated species with no hydrogen bond. All the structural and Mössbauer properties suggest that these new hydrogen-bonded species have the same electronic configuration as imidazole-ligated species with no hydrogen bond. These new studies continue to show that the effects of hydrogen bonding in five-coordinate high-spin iron(II) systems are subtle and challenging to understand.

5.
Chem Rev ; 117(19): 12532-12563, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28921972

ABSTRACT

Nuclear resonance vibrational spectroscopy (NRVS; also known as nuclear inelastic scattering, NIS) is a synchrotron-based method that reveals the full spectrum of vibrational dynamics for Mössbauer nuclei. Another major advantage, in addition to its completeness (no arbitrary optical selection rules), is the unique selectivity of NRVS. The basics of this recently developed technique are first introduced with descriptions of the experimental requirements and data analysis including the details of mode assignments. We discuss the use of NRVS to probe 57Fe at the center of heme and heme protein derivatives yielding the vibrational density of states for the iron. The application to derivatives with diatomic ligands (O2, NO, CO, CN-) shows the strong capabilities of identifying mode character. The availability of the complete vibrational spectrum of iron allows the identification of modes not available by other techniques. This permits the correlation of frequency with other physical properties. A significant example is the correlation we find between the Fe-Im stretch in six-coordinate Fe(XO) hemes and the trans Fe-N(Im) bond distance, not possible previously. NRVS also provides uniquely quantitative insight into the dynamics of the iron. For example, it provides a model-independent means of characterizing the strength of iron coordination. Prediction of the temperature-dependent mean-squared displacement from NRVS measurements yields a vibrational "baseline" for Fe dynamics that can be compared with results from techniques that probe longer time scales to yield quantitative insights into additional dynamical processes.


Subject(s)
Heme/chemistry , Iron/chemistry , Magnetic Resonance Spectroscopy , Vibration , Ligands
6.
J Porphyr Phthalocyanines ; 20(1-4): 254-264, 2016.
Article in English | MEDLINE | ID: mdl-27574390

ABSTRACT

The reaction of [Fe(TMP)(OClO3)], where TMP is the dianion of tetramesitylporphyrin, with a combination of a strong π-acceptor ligand and a π-donating imidazole can lead to the preparation of mixed-ligand complexes [Fe(Porph)(4-CNPy)(L)]+ where L is imidazole itself or 1-acetylimidazole and 4-cyanopyridine is the strong π acceptor ligand. The stability of the new mixed-ligand pair is the presumed result of synergic bonding between the two axial ligands. The molecular structure and other characterization of the new mixed axial ligand complex, [Fe(TMP)(4-CNPy)(HIm)]ClO4 is described. The axial ligands have a relative perpendicular arrangement with Fe-N(imidazole) = 1.945 Å and Fe-N(pyridine) = 2.021 Å The average equatorial Fe-Np distance is 1.963 Å, which is consistent with the S4-ruffled TMP core. Despite the relative perpendicular arrangement of axial ligands, the EPR spectrum of the complex is a rhombic signal and not a large gmax signal. The EPR g-values are g1 = 3.05, g2 = 2.07, and g3 = 1.22. A quadrupole doublet was seen in the Mössbauer spectrum with an isomer shift of 0.197 mm/s and quadrupole splitting of 1.935 mm/s. Two crystalline forms of [Fe(TMP)(4-CNPy)(HIm)]ClO4 have been characterized; the two forms differ only in the solvent content of the lattice. Crystal data for form A: a = 15.432 (12) Å, b = 20.696 (2) Å, c = 19.970 (5) Å, and ß = 99.256 (14)°, monoclinic, space group P21/n, V = 6295 (2) Å3, Z = 4, formula FeCl3O4N8C69H69, 8397 observed data, R1 = 0.086, wR2 = 0.210, refinement on F2. Crystal data for form B: a = 15.267 (3) Å, b = 20.377 (6) Å, c = 19.670 (4) Å, and ß = 98.14 (1)°, monoclinic, space group P21/n, V = 6058 (4) Å3, Z = 4, formula C65.25H60.5Cl1.5FeN8O4, 5464 observed data, R1 = 0.096, wR2 = 0.112, refinement on F.

7.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 6): 824-8, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27308051

ABSTRACT

Two porphyrin complexes were studied to determine the effects of protonation on ring deformation within the porphyrin. The porphyrin 7,8,17,18-tetra-bromo-5,10,15,20-tetra-phenyl-porphyrin, C44H26Br4N4, was selected because the neutral species is readily doubly protonated to yield a dication, which was crystallized here with perchlorate counter-ions as a di-chloro-methane tris-olvate, C44H28Br4N4 (2+)·2ClO4 (-)·3CH2Cl2. The centrosymmetric neutral species is observed to have a mild 'ruffling' of the pyrrole rings and is essentially planar throughout; intra-molecular N-H⋯N hydrogen bonds occur. In contrast, the dication exhibits considerable deformation, with the pyrrole rings oriented well out of the plane of the porphyrin, resulting in a 'saddle' conformation of the ring. The charged species forms N-H⋯O hydrogen bonds to the perchlorate anions, which lie above and below the plane of the porphyrin ring. Distortions to the planarity of the pyrrole rings in both cases are very minor. The characterization of the neutral species represents a low-temperature redetermination of the previous room-temperature analyses [Zou et al. (1995 ▸). Acta Cryst. C51, 760-761; Rayati et al. (2008 ▸). Polyhedron, pp. 2285-2290], which showed disorder and physically unrealistic displacement parameters.

8.
Inorg Chem ; 55(12): 6294-9, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27276239

ABSTRACT

Procedures for the purification and subsequent crystallization of the slightly soluble four-coordinate metallporphines, the simplest possible porphyrin derivatives, are described. Crystals of the porphine derivatives of cobalt(II), copper(II), platinum(II), and two polymorphs of zinc(II) were obtained. Analysis of the crystal and molecular structures shows that all except the platinum(II) derivative form an unusual trimeric species in the solid state. The isomorphous cobalt(II), copper(II), and one zinc(II) polymorph pack in the unit cell to form dimers as well as the trimers. Interplanar spacings between porphine rings are similar in both the dimers and trimers and range between 3.24 and 3.37 Å. Porphine rings are strongly overlapped with lateral shifts between ring centers in both the dimers and trimers with values between 1.52 and 1.70 Å or in Category S as originally defined by Scheidt and Lee. Periodic trends in the M-Np bond distances parallel those observed previously for tetraphenyl- and octaethylporphyrin derivatives.

9.
Chemistry ; 22(18): 6323-6332, 2016 Apr 25.
Article in English | MEDLINE | ID: mdl-26999733

ABSTRACT

The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(TpFPP)(1-MeIm)(NO)] (TpFPP=tetra-para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicular to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X=N, C, and O) complexes is correlated with the Fe-XO bond lengths. The nature of highest frequency band at ≈560 cm(-1) has also been examined in two additional new derivatives. Previously assigned as the Fe-NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. The results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.


Subject(s)
Heme/chemistry , Imidazoles/chemistry , Iron/chemistry , Metalloporphyrins/chemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular
10.
Dalton Trans ; 44(42): 18301-10, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26387976

ABSTRACT

A common structural motif in heme proteins is a five-coordinate species in which the iron is coordinated by a histidyl residue. The widely distributed heme proteins with this motif are essential for the well being of humans and other organisms. We detail the differences in molecular structures and physical properties of high-spin iron(ii) porphyrin derivatives ligated by neutral imidazole, hydrogen bonded imidazole, and imidazolate or other anions. Two distinct (high spin) electronic states are observed that have differing d-orbital occupancies and discernibly different five-coordinate square-pyramidal coordination groups. The doubly occupied orbital in the imidazole species is a low symmetry orbital oblique to the heme plane whereas in the imidazolate species the doubly occupied orbital is a high symmetry orbital in the heme plane, i.e., the primary doubly-occupied d-orbital is different. Methods that can be used to classify a particular complex into one or the other state include X-ray structure determinations, high-field Mössbauer spectroscopy, vibrational spectroscopy, magnetic circular dichroism, and even-spin EPR spectroscopy. The possible functional significance of the ground state differences has not been established for heme proteins, but is likely found in the pathways for oxygen transport vs. oxygen utilization.


Subject(s)
Ferrous Compounds/chemistry , Heme/chemistry , Anions/chemistry , Circular Dichroism , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Hydrogen Bonding , Imidazoles/chemistry , Ligands , Quantum Theory , Spectroscopy, Mossbauer
11.
Inorg Chem ; 54(13): 6472-85, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26098173

ABSTRACT

The synthesis of six new bis(cyano) iron(III) porphyrinate derivatives is reported. The anionic porphyrin complexes utilized tetraphenylporphyrin, tetramesitylporphyrin, and tetratolylporphyrin as the porphyrin ligand. The potassium salts of Kryptofix-222 and 18-C-6 were used as the cations. These complexes have been characterized by X-ray structure analysis, solid-state Mössbauer spectroscopy, and EPR spectroscopy, both in frozen CH2Cl2 solution and in the microcrystalline state. These data show that these anionic complexes can exist in either the (dxz,dyz)(4)(dxy)(1) or the (dxy)(2)(dxz,dyz)(3) electronic configuration and some can clearly readily interconvert. This is a reflection that these two states can be very close in energy. In addition to the effects of varying the porphyrin ligand, subtle effects of the cyanide ligand environment in the solid state and in solution are sufficient to shift the balance between the two electronic states.


Subject(s)
Cyanides/chemistry , Iron/chemistry , Porphyrins/chemistry , Crystallography, X-Ray , Molecular Structure , Porphyrins/chemical synthesis
12.
J Porphyr Phthalocyanines ; 19(12): 1256-1261, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27547029

ABSTRACT

The crystallization and the crystal and molecular structure of a very slightly soluble electrostatically interacting pair of porphyrins is described. The tetra-anion 5,10,15,20-tetrakis-(4-sulfonatophenyl)-21,23H-porphyrin [H2TPPSO3]4- and the tetra-cation 5,10,15,20-tetra(N-methylpyridyl)21H,23H-porphyrin [H2TMePyP]4+ are found to form an alternating one-dimensional stack that is stabilised by electrostatic interactions between the porphyrin rings but also by π-π interactions between all substituted phenyl rings in the ensemble. The resulting interactions between the porphyrins is exceptionally tight.

13.
J Am Chem Soc ; 136(52): 18100-10, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25490350

ABSTRACT

Oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS) has been used to obtain all iron vibrations in two {FeNO}(6) porphyrinate complexes, five-coordinate [Fe(OEP)(NO)]ClO4 and six-coordinate [Fe(OEP)(2-MeHIm)(NO)]ClO4. A new crystal structure was required for measurements of [Fe(OEP)(2-MeHIm)(NO)]ClO4, and the new structure is reported herein. Single crystals of both complexes were oriented to be either parallel or perpendicular to the porphyrin plane and/or axial imidazole ligand plane. Thus, the FeNO bending and stretching modes can now be unambiguously assigned; the pattern of shifts in frequency as a function of coordination number can also be determined. The pattern is quite distinct from those found for CO or {FeNO}(7) heme species. This is the result of unchanging Fe-N(NO) bonding interactions in the {FeNO}(6) species, in distinct contrast to the other diatomic ligand species. DFT calculations were also used to obtain detailed predictions of vibrational modes. Predictions were consistent with the intensity and character found in the experimental spectra. The NRVS data allow the assignment and observation of the challenging to obtain Fe-Im stretch in six-coordinate heme derivatives. NRVS data for this and related six-coordinate hemes with the diatomic ligands CO, NO, and O2 reveal a strong correlation between the Fe-Im stretch and Fe-N(Im) bond distance that is detailed for the first time.


Subject(s)
Heme/chemistry , Iron/chemistry , Vibration , Ligands , Models, Molecular , Molecular Conformation , Quantum Theory
14.
J Porphyr Phthalocyanines ; 18(5): 380-384, 2014 May.
Article in English | MEDLINE | ID: mdl-25382965

ABSTRACT

The molecular structure of the µ-nitrido dimer, µ-nitrido-bis(2,3,7,8,12,13, 17,18-octaethylporphyrinato)iron, is reported. The axial Fe-N distances average to 1.657 (11) Å and the equatorial distances average to 2.005(5) Å. Although not required by symmetry, the two iron centers appear equivalent and are consistent with an assignment of a low-spin state and a formal oxidation state of +3.5. A comparison of this structure with other nitrido-bridged species is given.

15.
J Am Chem Soc ; 136(28): 9818-21, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24950373

ABSTRACT

Heme-carbonyl complexes are widely exploited for the insight they provide into the structural basis of function in heme-based proteins, by revealing the nature of their bonded and nonbonded interactions with the protein. This report presents two novel results which clearly establish a FeCO vibrational signature for crystallographically verified pentacoordination. First, anisotropy in the NRVS density of states for ν(Fe-C) and δ(FeCO) in oriented single crystals of [Fe(OEP)(CO)] clearly reveals that the Fe-C stretch occurs at higher frequency than the FeCO bend and considerably higher than any previously reported heme carbonyl. Second, DFT calculations on a series of heme carbonyls reveal that the frequency crossover occurs near the weak trans O atom donor, furan. As ν(Fe-C) occurs at lower frequencies than δ(FeCO) in all heme protein carbonyls reported to date, the results reported herein suggest that they are all hexacoordinate.


Subject(s)
Hemeproteins/chemistry , Protein Carbonylation , Anisotropy , Carbon Monoxide/chemistry , Carbonates/chemistry , Crystallography, X-Ray , Ferric Compounds/chemistry , Iron/chemistry , Ligands , Stereoisomerism
16.
Inorg Chem ; 53(7): 3763-8, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24620710

ABSTRACT

The synthesis and spectroscopic characterization of three five-coordinate nitrosyliron(II) complexes, [Fe(Porph)(NO)], are reported. These three nitrosyl derivatives, where Porph represents protoporphyrin IX dimethyl ester, mesoporphyrin IX dimethyl ester, or deuteroporphyrin IX dimethyl ester, display notable differences in their properties relative to the symmetrical synthetic porphyrins such as OEP and TPP. The N-O stretching frequencies are in the range of 1651-1660 cm(-1), frequencies that are lower than those of synthetic porphyrin derivatives. Mössbauer spectra obtained in both zero and applied magnetic field show that the quadrupole splitting values are slightly larger than those of known synthetic porphyrins. The electronic structures of these naturally occurring porphyrin derivatives are thus seen to be consistently different from those of the synthetic derivatives, the presumed consequence of the asymmetric peripheral substituent pattern. The molecular structure of [Fe(PPIX-DME)(NO)] has been determined by X-ray crystallography. Although disorder of the axial nitrosyl ligand limits the structural quality, this derivative appears to show the same subtle structural features as previously characterized five-coordinate nitrosyls.


Subject(s)
Iron/chemistry , Metalloporphyrins/chemistry , Nitrogen Oxides/chemistry , Crystallography, X-Ray , Models, Molecular
17.
Inorg Chem ; 53(5): 2582-90, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24528178

ABSTRACT

The vibrational spectra of two five-coordinate nitrosyl iron porphyrinates, [Fe(OEP)(NO)] (OEP = dianion of 2,3,7,8,12,13,17,18-octaethylporphyrin) and [Fe(DPIX)(NO)] (DPIX = deuteroporphyrin IX), have been studied by oriented single-crystal nuclear resonance vibrational spectroscopy. Single crystals (both are in the triclinic crystal system) were oriented to give vibrational spectra perpendicular to the porphyrin plane. Additionally, two orthogonal in-plane measurements that were also either perpendicular or parallel to the projection of the FeNO plane onto the porphyrin plane yield the complete set of vibrations with iron motion. In addition to cleanly enabling the assignment of the FeNO bending and stretching modes, the measurements reveal that the two in-plane spectra from the parallel and perpendicular in-plane directions for both compounds have substantial differences. The assignment of these in-plane vibrations were aided by density functional theory predictions. The differences in the two in-plane directions result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is thus found to be largely parallel and perpendicular to the projection of the FeNO plane on the porphyrin plane. These axial ligand effects on the in-plane iron motion are related to the strength of the axial ligand-to-iron bond.


Subject(s)
Heme/chemistry , Iron/chemistry , Metalloporphyrins/chemistry , Nitrogen Oxides/chemistry , Heme/chemical synthesis , Models, Molecular , Oxidation-Reduction , Vibration
18.
J Am Chem Soc ; 135(41): 15627-41, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24025123

ABSTRACT

Disorder in the position of the dioxygen ligand is a well-known problem in dioxygen complexes and, in particular, those of picket fence porphyrin species. The dynamics of Fe-O2 rotation and tert-butyl motion in three different picket fence porphyrin derivatives has been studied by a combination of multitemperature X-ray structural studies and Mössbauer spectroscopy. Structural studies show that the motions of the dioxygen ligand also require motions of the protecting pickets of the ligand binding pocket. The two motions appear to be correlated, and the temperature-dependent change in the O2 occupancies cannot be governed by a simple Boltzmann distribution. The three [Fe(TpivPP)(RIm)(O2)] derivatives studied have RIm = 1-methyl-, 1-ethyl-, or 2-methylimidazole. In all three species there is a preferred orientation of the Fe-O2 moiety with respect to the trans imidazole ligand and the population of this orientation increases with decreasing temperature. In the 1-MeIm and 1-EtIm species the Fe-O2 unit is approximately perpendicular to the imidazole plane, whereas in the 2-MeHIm species the Fe-O2 unit is approximately parallel. This reflects the low energy required for rotation of the Fe-O2 unit and the small energy differences in populating the possible pocket quadrants. All dioxygen complexes have a crystallographically required 2-fold axis of symmetry that limits the accuracy of the determined Fe-O2 geometry. However, the 80 K structure of the 2-MeHIm derivative allowed for resolution of the two bonded oxygen atom positions and provided the best geometric description for the Fe-O2 unit. The values determined are Fe-O = 1.811(5) Å, Fe-O-O = 118.2(9)°, O-O = 1.281(12) Å, and an off-axis tilt of 6.2°. Demonstration of the off-axis tilt is a first. We present detailed temperature-dependent simulations of the Mössbauer spectra that model the changing value of the quadrupole splitting and line widths. Residuals to fits are poorer at higher temperature. We believe that this is consistent with the idea that population of the two conformers is related to the concomitant motions of both Fe-O2 rotations and motions of the protecting tert-butyl pickets.


Subject(s)
Ferric Compounds/chemistry , Oxygen/chemistry , Porphyrins/chemistry , Ferric Compounds/chemical synthesis , Ligands , Molecular Structure , Spectroscopy, Mossbauer , Thermodynamics
19.
Inorg Chem ; 52(19): 11361-9, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24020589

ABSTRACT

The complete iron vibrational spectrum of the five-coordinate high-spin complex [Fe(OEP)(2-MeHIm)], where OEP = octaethylporphyrinato and 2-MeHIm = 2-methylimidazole, has been obtained by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS) data. Measurements have been made in three orthogonal directions, which provides quantitative information for all iron motion. These experimental data, buttressed by density functional theory (DFT) calculations, have been used to define the effects of the axial ligand orientation. Although the axial imidazole removes the degeneracy in the in-plane vibrations, the imidazole orientation does not appear to control the direction of the in-plane iron motion. This is in contrast to the effect of the imidazolate ligand, as defined by DFT calculations, which does have substantial effects on the direction of the in-plane iron motion. The axial NO ligand has been found to have the strongest orientational effect (Angew. Chem., Int. Ed., 2010, 49, 4400). Thus the strength of the directional properties are in the order NO > imidazolate > imidazole, consistent with the varying strength of the Fe-ligand bond.


Subject(s)
Coordination Complexes/chemistry , Heme/chemistry , Imidazoles/chemistry , Quantum Theory , Anisotropy , Iron/chemistry , Vibration
20.
Inorg Chem ; 52(17): 9948-53, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23962374

ABSTRACT

We used a newer, synchrotron-based, spectroscopic technique (nuclear resonance vibrational spectroscopy, NRVS) in combination with a more traditional one (infrared absorption, IR) to obtain a complete, quantitative picture of the metal center vibrational dynamics in a six-coordinated tin porphyrin. From the NRVS (119)Sn site-selectivity and the sensitivity of the IR signal to (112)Sn/(119)Sn isotope substitution, we identified the frequency of the antisymmetric stretching of the axial bonds (290 cm(-1)) and all the other vibrations involving Sn. Experimentally authenticated density functional theory (DFT) calculations aid the data interpretation by providing detailed normal mode descriptions for each observed vibration. These results may represent a starting point toward the characterization of the local vibrational dynamics of the metallic site in tin porphyrins and compounds with related structures. The quantitative complementariness between IR, NRVS, and DFT is emphasized.


Subject(s)
Metalloporphyrins/chemistry , Tin/chemistry , Models, Molecular , Quantum Theory , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...