Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 19(7): 9562-76, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-25004067

ABSTRACT

It is well established that the performance of lipase B from Candida antarctica (CALB) as catalyst for esterification reactions may be improved by the use of ultrasound technology or by its immobilization on styrene-divinylbenzene beads (MCI-CALB). The present research evaluated the synthesis of butyl acetate using MCI-CALB under ultrasonic energy, comparing the results against those obtained using the commercial preparation, Novozym 435. The optimal conditions were determined using response surface methodology (RSM) evaluating the following parameters: reaction temperature, substrate molar ratio, amount of biocatalyst, and added water. The optimal conditions for butyl acetate synthesis catalyzed by MCI-CALB were: temperature, 48.8 °C; substrate molar ratio, 3.46:1 alcohol:acid; amount of biocatalyst, 7.5%; and added water 0.28%, both as substrate mass. Under these conditions, 90% of conversion was reached in 1.5 h. In terms of operational stability, MCI-CALB was reused in seven cycles while keeping 70% of its initial activity under ultrasonic energy. The support pore size and resistance are key points for the enzyme activity and stability under mechanical stirring. The use of ultrasound improved both activity and stability because of better homogeneity and reduced mechanical stress to the immobilized system.


Subject(s)
Acetates/chemical synthesis , Biocatalysis , Candida/enzymology , Enzymes, Immobilized/metabolism , Ultrasonics , Catalysis , Enzyme Activation , Fungal Proteins , Hydrogen-Ion Concentration , Lipase , Temperature
2.
Ultrason Sonochem ; 20(5): 1155-60, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23453821

ABSTRACT

The influence of low-frequency ultrasound (40 kHz) in the esterification reaction between acetic acid and butanol for flavor ester synthesis catalyzed by the commercial immobilized lipase B from Candida antarctica (Novozym 435) was evaluated. A central composite design and the response surface methodology were used to analyze the effects of the reaction parameters (temperature, substrate molar ratio, enzyme content and added water) and their response (yields of conversion in 2.5 h of reaction). The reaction was carried out using n-hexane as solvent. The optimal conditions for ultrasound-assisted butyl acetate synthesis were found to be: temperature of 46 °C; substrate molar ratio of 3.6:1 butanol:acetic acid; enzyme content of 7%; added water of 0.25%, conditions that are slightly different from those found using mechanical mixing. Over 94% of conversion was obtained in 2.5h under these conditions. The optimal acid concentration for the reaction was determined to be 2.0 M, compared to 0.3 M without ultrasound treatment. Enzyme productivity was significantly improved to around 7.5-fold for each batch when comparing ultrasound and standard mechanical agitation. The biocatalyst could be directly reused for 14 reactions cycles keeping around 70% of its original activity, while activity was virtually zeroed in the third cycle using the standard mixing system. Thus, compared to the traditional mechanical agitation, ultrasound technology not only improves the process productivity, but also enhances enzyme recycling and stability in the presence of acetic acid, being a powerful tool to improve biocatalyst performance in this type of reaction.


Subject(s)
Acetates/metabolism , Biocatalysis , Lipase/metabolism , Sonication , Acetates/chemistry , Enzyme Activation , Enzymes, Immobilized , Fungal Proteins , Lipase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...