Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(26): 4884-4895, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37225435

ABSTRACT

Establishing the neural mechanisms responsible for the altered global states of consciousness during anesthesia and dissociating these from other drug-related effects remains a challenge in consciousness research. We investigated differences in brain activity between connectedness and disconnectedness by administering various anesthetics at concentrations designed to render 50% of the subjects unresponsive. One hundred and sixty healthy male subjects were randomized to receive either propofol (1.7 µg/ml; n = 40), dexmedetomidine (1.5 ng/ml; n = 40), sevoflurane (0.9% end-tidal; n = 40), S-ketamine (0.75 µg/ml; n = 20), or saline placebo (n = 20) for 60 min using target-controlled infusions or vaporizer with end-tidal monitoring. Disconnectedness was defined as unresponsiveness to verbal commands probed at 2.5-min intervals and unawareness of external events in a postanesthesia interview. High-resolution positron emission tomography (PET) was used to quantify regional cerebral metabolic rates of glucose (CMRglu) utilization. Contrasting scans where the subjects were classified as connected and responsive versus disconnected and unresponsive revealed that for all anesthetics, except S-ketamine, the level of thalamic activity differed between these states. A conjunction analysis across the propofol, dexmedetomidine and sevoflurane groups confirmed the thalamus as the primary structure where reduced metabolic activity was related to disconnectedness. Widespread cortical metabolic suppression was observed when these subjects, classified as either connected or disconnected, were compared with the placebo group, suggesting that these findings may represent necessary but alone insufficient mechanisms for the change in the state of consciousness.SIGNIFICANCE STATEMENT Experimental anesthesia is commonly used in the search for measures of brain function which could distinguish between global states of consciousness. However, most previous studies have not been designed to separate effects related to consciousness from other effects related to drug exposure. We employed a novel study design to disentangle these effects by exposing subjects to predefined EC50 doses of four commonly used anesthetics or saline placebo. We demonstrate that state-related effects are remarkably limited compared with the widespread cortical effects related to drug exposure. In particular, decreased thalamic activity was associated with disconnectedness with all used anesthetics except for S-ketamine.


Subject(s)
Anesthesia , Anesthetics, Inhalation , Dexmedetomidine , Ketamine , Propofol , Male , Humans , Propofol/pharmacology , Sevoflurane/pharmacology , Ketamine/pharmacology , Dexmedetomidine/pharmacology , Anesthetics, Inhalation/pharmacology , Anesthetics, Intravenous
2.
Eur J Anaesthesiol ; 39(6): 521-532, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34534172

ABSTRACT

BACKGROUND: Pharmacometabolomics uses large-scale data capturing methods to uncover drug-induced shifts in the metabolic profile. The specific effects of anaesthetics on the human metabolome are largely unknown. OBJECTIVE: We aimed to discover whether exposure to routinely used anaesthetics have an acute effect on the human metabolic profile. DESIGN: Randomised, open-label, controlled, parallel group, phase IV clinical drug trial. SETTING: The study was conducted at Turku PET Centre, University of Turku, Finland, 2016 to 2017. PARTICIPANTS: One hundred and sixty healthy male volunteers were recruited. The metabolomic data of 159 were evaluable. INTERVENTIONS: Volunteers were randomised to receive a 1-h exposure to equipotent doses (EC50 for verbal command) of dexmedetomidine (1.5 ng ml-1; n  = 40), propofol (1.7 µg ml-1; n  = 40), sevoflurane (0.9% end-tidal; n  = 39), S-ketamine (0.75 µg ml-1; n  = 20) or placebo (n = 20). MAIN OUTCOME MEASURES: Metabolite subgroups of apolipoproteins and lipoproteins, cholesterol, glycerides and phospholipids, fatty acids, glycolysis, amino acids, ketone bodies, creatinine and albumin and the inflammatory marker GlycA, were analysed with nuclear magnetic resonance spectroscopy from arterial blood samples collected at baseline, after anaesthetic administration and 70 min post-anaesthesia. RESULTS: All metabolite subgroups were affected. Statistically significant changes vs. placebo were observed in 11.0, 41.3, 0.65 and 3.9% of the 155 analytes in the dexmedetomidine, propofol, sevoflurane and S-ketamine groups, respectively. Dexmedetomidine increased glucose, decreased ketone bodies and affected lipoproteins and apolipoproteins. Propofol altered lipoproteins, fatty acids, glycerides and phospholipids and slightly increased inflammatory marker glycoprotein acetylation. Sevoflurane was relatively inert. S-ketamine increased glucose and lactate, whereasbranched chain amino acids and tyrosine decreased. CONCLUSION: A 1-h exposure to moderate doses of routinely used anaesthetics led to significant and characteristic alterations in the metabolic profile. Dexmedetomidine-induced alterations mirror a2-adrenoceptor agonism. Propofol emulsion altered the lipid profile. The inertness of sevoflurane might prove useful in vulnerable patients. S-ketamine induced amino acid alterations might be linked to its suggested antidepressive properties. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02624401.


Subject(s)
Anesthetics, Inhalation , Dexmedetomidine , Metabolome , Methyl Ethers , Propofol , Amino Acids , Anesthetics, Inhalation/adverse effects , Dexmedetomidine/adverse effects , Fatty Acids , Glucose , Glycerides , Humans , Ketamine , Ketone Bodies , Magnetic Resonance Spectroscopy , Male , Metabolome/drug effects , Phospholipids , Sevoflurane
3.
J Immunol ; 178(6): 3648-60, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17339462

ABSTRACT

Th cell subtypes, Th1 and Th2, are involved in the pathogenesis or progression of many immune-mediated diseases, such as type 1 diabetes and asthma, respectively. Defining the molecular networks and factors that direct Th1 and Th2 cell differentiation will help to understand the pathogenic mechanisms causing these diseases. Some of the key factors regulating this differentiation have been identified, however, they alone do not explain the process in detail. To identify novel factors directing the early differentiation, we have studied the transcriptomes of human Th1 and Th2 cells after 2, 6, and 48 h of polarization at the genome scale. Based on our current and previous studies, 288 genes or expressed sequence tags, representing approximately 1-1.5% of the human genome, are regulated in the process during the first 2 days. These transcriptional profiles revealed genes coding for components of certain pathways, such as RAS oncogene family and G protein-coupled receptor signaling, to be differentially regulated during the early Th1 and Th2 cell differentiation. Importantly, numerous novel genes with unknown functions were identified. By using short-hairpin RNA knockdown, we show that a subset of these genes is regulated by IL-4 through STAT6 signaling. Furthermore, we demonstrate that one of the IL-4 regulated genes, NDFIP2, promotes IFN-gamma production by the polarized human Th1 lymphocytes. Among the novel genes identified, there may be many factors that play a crucial role in the regulation of the differentiation process together with the previously known factors and are potential targets for developing therapeutics to modulate Th1 and Th2 responses.


Subject(s)
Cell Differentiation/physiology , Gene Expression Regulation/physiology , Genome, Human/physiology , Th1 Cells/physiology , Th2 Cells/physiology , Transcription, Genetic/physiology , Cells, Cultured , Gene Expression Profiling , Humans , Interleukin-4/immunology , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , STAT6 Transcription Factor/immunology , Signal Transduction/immunology , Time Factors
4.
J Immunol ; 172(11): 6775-82, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15153495

ABSTRACT

IL-12 signaling through STAT4 is essential for induction of optimal levels of IFN-gamma production and commitment of Th1 cells. The molecular mechanism that controls how IL-12 and STAT4 signaling induces Th1 differentiation is poorly described. To identify the early target genes of IL-12 and STAT4 signaling, oligonucleotide arrays were used to compare the gene expression profiles of wild-type and STAT4-knockout murine Th cells during the early Th1 differentiation. According to the results, 20 genes were regulated in an IL-12- and STAT4-dependent manner. Importantly, Ifngamma was clearly the first gene induced by IL-12 in a STAT4-dependent manner. Most of the other defects in gene expression in STAT4-knockout cells were seen after 48 h of Th1 polarization. In addition to IL-12 signaling mediated by STAT4, STAT4-independent induction of a number of genes was observed immediately in response to Th1 induction. This induction was at least in part driven by IFN-gamma independently of STAT4. Importantly, addition of exogenous IFN-gamma into Th1 cell cultures of STAT4-knockout cells restored the defect in IFN-gamma production further demonstrating the critical role of IFN-gamma in early Th1 differentiation.


Subject(s)
DNA-Binding Proteins/physiology , Gene Expression Regulation , Interleukin-12/pharmacology , Th1 Cells/physiology , Trans-Activators/physiology , Animals , Cell Differentiation , Cell Polarity , Cells, Cultured , Interferon-gamma/biosynthesis , Mice , Mice, Inbred BALB C , Reverse Transcriptase Polymerase Chain Reaction , STAT4 Transcription Factor , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...