Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 61(1): 120-131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37589833

ABSTRACT

Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3, APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic, and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice have lower synaptic activity, but higher levels of paired-pulse facilitation (PPF) and long-term potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high-frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype, and angiotensin II in AD.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Mice , Humans , Animals , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Angiotensin II/pharmacology , Apolipoprotein E3/genetics , Mice, Transgenic , Apolipoproteins E/genetics , Alzheimer Disease/metabolism , Long-Term Potentiation
2.
Res Sq ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292788

ABSTRACT

Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3 , APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice had lower basal synaptic activity, but higher levels of paired pulse facilitation (PPF) and Long-Term Potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype and angiotensin II in AD.

3.
Front Neurosci ; 15: 690410, 2021.
Article in English | MEDLINE | ID: mdl-34276296

ABSTRACT

Compared with APOE3, APOE4 is associated with greater age-related cognitive decline and higher risk of neurodegenerative disorders. Therefore, development of supplements that target APOE genotype-modulated processes could provide a great benefit for the aging population. Evidence suggests a link between APOE genotype and docosahexaenoic acid (DHA); however, clinical studies with current DHA supplements have produced negative results in dementia. The lack of beneficial effects with current DHA supplements may be related to limited bioavailability, as the optimal form of DHA for brain uptake is lysophosphatidylcholine (LPC)-DHA. We previously developed a method to enrich the LPC-DHA content of krill oil through lipase treatment (LT-krill oil), which resulted in fivefold higher enrichment in brain DHA levels in wild-type mice compared with untreated krill oil. Here, we evaluated the effect of a control diet, diet containing krill oil, or a diet containing LT-krill oil in APOE3- and APOE4-targeted replacement mice (APOE-TR mice; treated from 4 to 12 months of age). We found that DHA levels in the plasma and hippocampus are lower in APOE4-TR mice and that LT-krill oil increased DHA levels in the plasma and hippocampus of both APOE3- and APOE4-TR mice. In APOE4-TR mice, LT-krill oil treatment resulted in higher levels of the synaptic vesicle protein SV2A and improved performance on the novel object recognition test. In conclusion, our data demonstrate that LPC-DHA/EPA-enriched krill oil can increase brain DHA and improve memory-relevant behavior in mice that express APOE4. Therefore, long-term use of LT-krill oil supplements may on some level protect against age-related neurodegeneration.

4.
Front Neurosci ; 15: 628403, 2021.
Article in English | MEDLINE | ID: mdl-33642985

ABSTRACT

Evidence suggests that angiotensin receptor blockers (ARBs) could be beneficial for Alzheimer's disease (AD) patients independent of any effects on hypertension. However, studies in rodent models directly testing the activity of ARB treatment on behavior and AD-relevent pathology including neuroinflammation, Aß levels, and cerebrovascular function, have produced mixed results. APOE4 is a major genetic risk factor for AD and has been linked to many of the same functions as those purported to be modulated by ARB treatment. Therefore, evaluating the effects of ARB treatment on behavior and AD-relevant pathology in mice that express human APOE4 could provide important information on whether to further develop ARBs for AD therapy. In this study, we treated female and male mice that express the human APOE4 gene in the absence (E4FAD-) or presence (E4FAD+) of high Aß levels with the ARB prodrug candesartan cilexetil for a duration of 4 months. Compared to vehicle, candesartan treatment resulted in greater memory-relevant behavior and higher hippocampal presynaptic protein levels in female, but not male, E4FAD- and E4FAD+ mice. The beneficial effects of candesartan in female E4FAD- and E4FAD+ mice occurred in tandem with lower GFAP and Iba1 levels in the hippocampus, whereas there were no effects on markers of cerebrovascular function and Aß levels. Collectively, these data imply that the effects of ARBs on AD-relevant pathology may be modulated in part by the interaction between APOE genotype and biological sex. Thus, the further development of ARBs could provide therapeutic options for targeting neuroinflammation in female APOE4 carriers.

5.
Heliyon ; 6(5): e03919, 2020 May.
Article in English | MEDLINE | ID: mdl-32478184

ABSTRACT

APOE4 is a major genetic risk factor for Alzheimer's disease and high amyloid-ß (Aß) levels in the brain are a pathological hallmark of the disease. However, the contribution of specific APOE-modulated Aß-dependent and Aß-independent functions to cognitive decline remain unclear. Increasing evidence supports a role of APOE in modulating cerebrovascular function, however whether ameliorating this dysfunction can improve behavioral function is still under debate. We have previously demonstrated that systemic epidermal growth factor (EGF) treatment, which is important for vascular function, at early stages of pathology (treatment from 6 to 8 months) is beneficial for recognition and spatial memory and cerebrovascular function in female mice that express APOE4. These data raise the important question of whether EGF can improve APOE4-associated cerebrovascular and behavioral dysfunction when treatment is initiated at an age of advanced pathology. Positive findings would support the development of therapies that target cerebrovascular dysfunction associated with APOE4 in aging and AD in individuals with advanced cognitive impairment. Therefore, in this study female mice that express APOE4 in the absence (E4FAD- mice) or presence (E4FAD+ mice) of Aß overproduction were treated from 8 to 10 months of age systemically with EGF. EGF treatment mitigated behavioral dysfunction in recognition memory and spatial learning and improved hippocampal neuronal function in both E4FAD+ and E4FAD- mice, suggesting that EGF treatment improves Aß-independent APOE4-associated deficits. The beneficial effects of EGF treatment on behavior occurred in tandem with improved markers of cerebrovascular function, including lower levels of fibrinogen, lower permeability when assessed by MRI and higher percent area coverage of laminin and CD31 in the hippocampus. These data suggest a mechanistic link among EGF signaling, cerebrovascular function and APOE4-associated behavioral deficits in mice with advanced AD-relevant pathology.

6.
Behav Brain Res ; 379: 112340, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31697984

ABSTRACT

The rostromedial tegmental nucleus (RMTg) receives inputs from the laterodorsal tegmental and pedunculopontine tegmental nuclei, the two principle brainstem cholinergic nuclei. We tested the effects of RMTg M3 and M4 muscarinic cholinergic receptor antagonism in a conditioned place preference (CPP) paradigm in mice. RMTg infusions of the M3 muscarinic cholinergic receptor antagonist 1,1-Dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) do not result in the acquisition of CPP but increase locomotor activation. By contrast, RMTg infusions of the M4 muscarinic cholinergic receptor antagonist Tropicamide result in the acquisition of CPP but do not increase locomotor activation. The rewarding effects of RMTg Tropicamide infusions are dopamine-dependent as systemic pre-treatment with the broad-spectrum dopamine receptor antagonist flupenthixol prevents the acquisition of CPP induced by RMTg Tropicamide infusions. Under conditions of systemic dopamine receptor blockade, RMTg Tropicamide infusions significantly increase locomotor activation. These data provide further support for an important role of endogenous cholinergic input to the RMTg in reward function and suggest that the contributions of RMTg cholinergic input to rewarding and locomotor-activating effects involve differential contributions of RMTg M4 and M3 muscarinic receptors, respectively.


Subject(s)
Behavior, Animal/drug effects , Conditioning, Psychological/drug effects , Dopamine Antagonists/pharmacology , Locomotion/drug effects , Muscarinic Antagonists/pharmacology , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M4/antagonists & inhibitors , Reward , Ventral Tegmental Area/drug effects , Animals , Dopamine Antagonists/administration & dosage , Flupenthixol/pharmacology , Mice , Mice, Inbred C57BL , Muscarinic Antagonists/administration & dosage , Piperidines/pharmacology , Tropicamide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...