Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2265, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480681

ABSTRACT

Rational design of next-generation therapeutics can be facilitated by high-resolution structures of drug targets bound to small-molecule inhibitors. However, application of structure-based methods to macromolecules refractory to crystallization has been hampered by the often-limiting resolution and throughput of cryogenic electron microscopy (cryo-EM). Here, we use high-resolution cryo-EM to determine structures of the CDK-activating kinase, a master regulator of cell growth and division, in its free and nucleotide-bound states and in complex with 15 inhibitors at up to 1.8 Å resolution. Our structures provide detailed insight into inhibitor interactions and networks of water molecules in the active site of cyclin-dependent kinase 7 and provide insights into the mechanisms contributing to inhibitor selectivity, thereby providing the basis for rational design of next-generation therapeutics. These results establish a methodological framework for the use of high-resolution cryo-EM in structure-based drug design.


Subject(s)
Cyclin-Dependent Kinase-Activating Kinase , Drug Design , Humans , Cryoelectron Microscopy/methods , Macromolecular Substances/chemistry , Cell Cycle
2.
Bioorg Med Chem Lett ; 26(21): 5290-5299, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27671498

ABSTRACT

A high throughput phenotypic screening against Mycobacterium smegmatis led us to the discovery of a new class of bacteriostatic, highly hydrophobic antitubercular quinazolinones that potently inhibited the in vitro growth of either extracellular or intramacrophagic M. tuberculosis (Mtb), via modulation of an unidentified but yet novel target. Optimization of the initial hit compound culminated in the identification of potent but poorly soluble Mtb growth inhibitors, three of which were progressed to in vivo efficacy studies. Despite nanomolar in vitro potency and attractive PK properties, none of these compounds was convincingly potent in our in vivo mouse tuberculosis models. This lack of efficacy may be linked to the poor drug-likeness of the test molecules and/or to the properties of the target.


Subject(s)
Antitubercular Agents/pharmacology , Quinazolinones/chemistry , Quinazolinones/pharmacology , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacokinetics , Cell Line , High-Throughput Screening Assays , Humans , Mice , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Mycobacterium tuberculosis/drug effects , Quinazolinones/pharmacokinetics , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 25(7): 1455-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25770781

ABSTRACT

A series of imidazo[1,2-a]indeno[1,2-e]pyrazin-4-ones that potently inhibit M. tuberculosis glutamine synthetase (GlnA1) has been identified by high throughput screening. Exploration of this series was performed owing to a short chemistry program. Despite possibly nanomolar inhibitions, none of these compounds was active on whole cell Mtb, suggesting that GlnA1 may not be a suitable target to find new anti-tubercular drugs.


Subject(s)
Antitubercular Agents/pharmacology , Enzyme Inhibitors/pharmacology , Glutamate-Ammonia Ligase/antagonists & inhibitors , Heterocyclic Compounds, 4 or More Rings/pharmacology , Imidazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Pyrazines/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glutamate-Ammonia Ligase/metabolism , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , High-Throughput Screening Assays , Imidazoles/chemical synthesis , Imidazoles/chemistry , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Pyrazines/chemical synthesis , Pyrazines/chemistry
4.
Bioorg Med Chem Lett ; 21(18): 5487-92, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21840215

ABSTRACT

The selective inhibition of the aspartyl protease renin is of high interest to control hypertension and associated cardiovascular risk factors. Following on preceding contributions, we report herein on the optimization of two series of azaindoles to arrive at potent and non-chiral renin inhibitors. The previously discovered azaindole scaffold was further explored by structure-based drug design in combination with parallel synthesis. This results in the identification of novel 5- or 7-azaindole derivatives with remarkable potency for renin inhibition. The best compounds on both series show IC(50) values between 3 and 8nM.


Subject(s)
Aza Compounds/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Renin/antagonists & inhibitors , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Renin/metabolism , Stereoisomerism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 21(18): 5480-6, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21840218

ABSTRACT

The control of hypertension and associated cardiovascular risk factors is possible by selective inhibition of the aspartyl protease renin due to its unique position in the renin-angiotensin system. Starting from a previously disclosed series of potent and nonchiral indole-3-carboxamides, we further explored this motif by structure-based drug design guided by X-ray crystallography in combination with efficient parallel synthesis. This resulted in the discovery of 4- or 6-azaindole derivatives with remarkable potency for renin inhibition. The best compound from these series showed an IC(50) value of 1.3 nM.


Subject(s)
Amides/pharmacology , Enzyme Inhibitors/pharmacology , Renin/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Renin/metabolism , Stereoisomerism , Structure-Activity Relationship
6.
J Med Chem ; 53(24): 8508-22, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21080703

ABSTRACT

Cyclin-dependent protein kinases (CDKs) are central to the appropriate regulation of cell proliferation, apoptosis, and gene expression. Abnormalities in CDK activity and regulation are common features of cancer, making CDK family members attractive targets for the development of anticancer drugs. Here, we report the identification of a pyrazolo[1,5-a]pyrimidine derived compound, 4k (BS-194), as a selective and potent CDK inhibitor, which inhibits CDK2, CDK1, CDK5, CDK7, and CDK9 (IC50= 3, 30, 30, 250, and 90 nmol/L, respectively). Cell-based studies showed inhibition of the phosphorylation of CDK substrates, Rb and the RNA polymerase II C-terminal domain, down-regulation of cyclins A, E, and D1, and cell cycle block in the S and G2/M phases. Consistent with these findings, 4k demonstrated potent antiproliferative activity in 60 cancer cell lines tested (mean GI50= 280 nmol/L). Pharmacokinetic studies showed that 4k is orally bioavailable, with an elimination half-life of 178 min following oral dosing in mice. When administered at a concentration of 25 mg/kg orally, 4k inhibited human tumor xenografts and suppressed CDK substrate phosphorylation. These findings identify 4k as a novel, potent CDK selective inhibitor with potential for oral delivery in cancer patients.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Blood Proteins/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Female , Humans , In Vitro Techniques , Mice , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Phosphorylation , Protein Binding , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
Bioorg Med Chem Lett ; 20(21): 6268-72, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20850300

ABSTRACT

Selective inhibition of the aspartyl protease renin has gained attraction as an interesting approach to control hypertension and associated cardiovascular risk factors given its unique position in the renin-angiotensin system. Using a combination of high-throughput screening, parallel synthesis, X-ray crystallography and structure-based design, we identified and optimized a novel series of potent and non-chiral indole-3-carboxamides with remarkable potency for renin. The most potent compound 5k displays an IC(50) value of 2nM.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Renin/antagonists & inhibitors , Crystallography, X-Ray , Drug Design , Drug Discovery , Drug Evaluation, Preclinical , Models, Molecular , Protein Conformation , Renin/chemistry , Structure-Activity Relationship
8.
Cancer Res ; 69(15): 6208-15, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19638587

ABSTRACT

Normal progression through the cell cycle requires the sequential action of cyclin-dependent kinases CDK1, CDK2, CDK4, and CDK6. Direct or indirect deregulation of CDK activity is a feature of almost all cancers and has led to the development of CDK inhibitors as anticancer agents. The CDK-activating kinase (CAK) plays a critical role in regulating cell cycle by mediating the activating phosphorylation of CDK1, CDK2, CDK4, and CDK6. As such, CDK7, which also regulates transcription as part of the TFIIH basal transcription factor, is an attractive target for the development of anticancer drugs. Computer modeling of the CDK7 structure was used to design potential potent CDK7 inhibitors. Here, we show that a pyrazolo[1,5-a]pyrimidine-derived compound, BS-181, inhibited CAK activity with an IC(50) of 21 nmol/L. Testing of other CDKs as well as another 69 kinases showed that BS-181 only inhibited CDK2 at concentrations lower than 1 micromol/L, with CDK2 being inhibited 35-fold less potently (IC(50) 880 nmol/L) than CDK7. In MCF-7 cells, BS-181 inhibited the phosphorylation of CDK7 substrates, promoted cell cycle arrest and apoptosis to inhibit the growth of cancer cell lines, and showed antitumor effects in vivo. The drug was stable in vivo with a plasma elimination half-life in mice of 405 minutes after i.p. administration of 10 mg/kg. The same dose of drug inhibited the growth of MCF-7 human xenografts in nude mice. BS-181 therefore provides the first example of a potent and selective CDK7 inhibitor with potential as an anticancer agent.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Breast Neoplasms/enzymology , Cell Cycle/drug effects , Cell Growth Processes/drug effects , Cell Line, Tumor , Computer-Aided Design , Drug Design , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Xenograft Model Antitumor Assays , Cyclin-Dependent Kinase-Activating Kinase
9.
J Am Chem Soc ; 128(24): 8087-94, 2006 Jun 21.
Article in English | MEDLINE | ID: mdl-16771525

ABSTRACT

Concise and flexible total syntheses of the pyrrolo[2,3-c]carbazole alkaloids dictyodendrin B (2), C (3), and E (5) are described. These polycyclic telomerase inhibitors of marine origin derive from the common intermediate 18 which was prepared on a multigram scale by a sequence comprising a TosMIC cycloaddition with formation of the pyrrole A-ring, a titanium-induced reductive oxoamide coupling reaction to generate an adjacent indole nucleus, and a photochemical 6pi-electrocyclization/aromatization tandem to forge the pyrrolocarbazole core. Conversion of 18 into dictyodendrin C required selective manipulations of the lateral protecting groups and oxidation with peroxoimidic acid to form the vinylogous benzoquinone core of the target. Zinc-induced reductive cleavage of the trichloroethyl sulfate ester then completed the first total synthesis of 3. Its relatives 2 and 5 also originate from compound 18 by a selective bromination of the pyrrole entity followed by elaboration of the resulting bromide 27 via metal-halogen exchange or cross-coupling chemistry, respectively. Particularly noteworthy in this context is the generation of the very labile p-quinomethide motif of dictyodendrin E by a palladium-catalyzed benzyl cross-coupling reaction followed by vinylogous oxidation of the resulting product 41 with DDQ. The Suzuki step could only be achieved with the aid of the borate complex 40 formed in situ from p-methoxybenzylmagnesium chloride and 9-MeO-9-BBN, whereas alternative methods employing benzylic boronates, -trifluoroborates, or -stannanes met with failure.


Subject(s)
Carbazoles/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Pyrroles/chemical synthesis , Telomerase/antagonists & inhibitors , Amides/chemistry , Benzoquinones/chemistry , Carbazoles/pharmacology , Catalysis , Cross-Linking Reagents/chemistry , Cyclization , Enzyme Inhibitors/pharmacology , Halogens/chemistry , Indole Alkaloids/chemical synthesis , Models, Chemical , Oxidation-Reduction , Palladium/chemistry , Photochemistry , Pyrroles/pharmacology , Stereoisomerism , Sulfuric Acid Esters/chemistry , Titanium/chemistry , Zinc/chemistry
10.
J Am Chem Soc ; 127(33): 11620-1, 2005 Aug 24.
Article in English | MEDLINE | ID: mdl-16104736

ABSTRACT

A concise total synthesis of dictyodendrin B (1) is reported, a scarce marine alkaloid endowed with promising telomerase inhibitory activity. Key steps of the chosen route are a reductive cyclization of ketoamide 11 to indole 12 mediated by low-valent titanium (from TiCl3 and KC8) followed by a photochemical 6pi-electrocyclization, which was performed in the presence of Pd/C and nitrobenzene to effect concomitant dehydrogenation/aromatization of the product initially formed. Regioselective bromination of the resulting pyrrolocarbazole 13 followed by lithium/bromine exchange and quenching of the resulting organolithium species with p-methoxybenzaldehyde installed the side chain at C2. Oxidation of the benzylic alcohol 15 thus obtained to ketone 17 was best achieved with catalytic amounts of tetra-n-propylammonium perruthenate (TPAP) and N-methylmorpholine-N-oxide (NMO) in dilute CH2Cl2 solution to avoid the formation of undue amounts of the unsymmetrical dimer 16. Ketone 17 was elaborated into the natural product by selective cleavage of the isopropyl ether with BCl3, introduction of the sulfate moiety with the aid of trichloroethyl chlorosulfuric acid ester, deprotection of all lateral methyl ether groups, and final reductive cleavage of the trichloroethyl ester moiety. The spectroscopic data of synthetic dictyodendrin B thus formed matched those of an authentic sample in all regards. Moreover, it was shown that global deprotection of the peripheral -OH groups in pyrrolo[2,3-c]carbazole 13 is accompanied by spontaneous air-oxidation to form the quinone core of dictyodendrin C.


Subject(s)
Acetophenones/chemical synthesis , Carbazoles/chemical synthesis , Porifera/chemistry , Pyrroles/chemical synthesis , Acetophenones/chemistry , Animals , Carbazoles/chemistry , Molecular Structure , Pyrroles/chemistry
11.
Proc Natl Acad Sci U S A ; 101(33): 11960-5, 2004 Aug 17.
Article in English | MEDLINE | ID: mdl-15141085

ABSTRACT

A concise and efficient total synthesis of the spermidine alkaloid (-)-isooncinotine (1) incorporating a 22-membered lactam ring is outlined. The approach is largely catalysis-based, involving a selective iron-catalyzed alkyl-aryl cross-coupling reaction of a difunctionalized pyridine substrate, a heterogeneous asymmetric hydrogenation step to set the chiral center of the target, and a highly integrated ring-closing metathesis/hydrogenation sequence to forge the saturated macrocyclic edifice in a single operation.


Subject(s)
Alkaloids/chemical synthesis , Alkaloids/chemistry , Catalysis , Chemistry, Organic/methods , Molecular Structure , Spermidine/analogs & derivatives , Spermidine/chemical synthesis , Spermidine/chemistry , Stereoisomerism
12.
J Org Chem ; 69(11): 3943-9, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15153029

ABSTRACT

Cheap, readily available, air stable, nontoxic, and environmentally benign iron salts such as Fe(acac)(3) are excellent precatalysts for the cross-coupling of Grignard reagents with alkenyl triflates and acid chlorides. Moreover, it is shown that dichloroarene and -heteroarene derivatives as the substrates can be selectively monoalkylated by this method. All cross-coupling reactions proceed very rapidly under notably mild conditions and turned out to be compatible with a variety of functional groups in both reaction partners. A detailed analysis of the preparative results suggests that iron-catalyzed C-C bond formations can occur via different pathways. Thus, it is likely that reactions of methylmagnesium halides involve iron-ate complexes as the active components, whereas reactions of Grignard reagents with two or more carbon atoms are effected by highly reduced iron-clusters of the formal composition [Fe(MgX)(2)](n) generated in situ. Control experiments using the ate-complex [Me(4)Fe]Li(2) corroborate this interpretation.

SELECTION OF CITATIONS
SEARCH DETAIL
...