Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 21(40): 14196-204, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26248693

ABSTRACT

Homoleptic iron complexes of six bis(pyridylimino)isoindoline (bpi) ligands with different substituents (H, Me, Et, tBu, OMe, NMe2) at the 4-positions of the pyridine moieties have been prepared and studied with regard to temperature-dependent spin and redox states by a combination of (57)Fe Mössbauer spectroscopy, SQUID magnetometry, single-crystal X-ray diffraction analysis, X-band EPR, and (1)H NMR spectroscopy. While the H-, methyl-, and ethyl-substituted complexes remain in a pure high-spin state irrespective of the temperature, the 4-tert-butyl-substituted derivative shows spin-crossover behavior. The methoxy- and dimethylamino-substituted compounds were found to easily undergo oxidation. In the crystalline state, valence tautomeric behavior was observed for the methoxy derivative as a thermally activated charge-transfer transition, accompanied by a spin crossover above 200 K. The valence tautomerism leads to a chelate with one of the bpi ligands as a dianion radical L(2-·) and with an effective spin of S=2.

2.
Chemistry ; 20(10): 2901-12, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24338832

ABSTRACT

Boron dipyrrin (BODIPY) DYEmers bridged by conjugating ethynylene and ethenylene moieties can be prepared through metal-promoted metathesis reactions. Alkyne metathesis was advantageous over alkene metathesis and Stille coupling for BODIPY substrates, but also showed specific restrictions with respect to steric encumbrance and regioselectivity. All derivatives with unhindered rotations along the bridges reside in a coplanar minimum conformation. For a hindered ß-ethenylene-bridged DYEmer, the shifts in the (1) H NMR spectrum indicate a significant loss of coplanarity and conjugation. The electronic interactions of the BODIPY subchromophores, visualized by optical spectra and cyclic voltammograms, deviate significantly from those found for nonconjugated and excitonically coupled DYEmers. The observed properties can be rationalized in each case by the respective strength of conjugation through the α or ß position, the degree of coplanarity, and conformational dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...