Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 6(5): 503-11, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19076640

ABSTRACT

The persistence of DNA from microorganisms exposed to various concentrations of SiO2 (ranging from 0 to 3000 p.p.m.) was monitored over time. The impact of silica mineralization or silicification on the longevity of 16S rRNA and 16 s rDNA genes from whole cells of Bacillus subtilis and Escherichia coli K12 was quantified using real-time polymerase chain reaction (RT-PCR), and cells were visualized using optical microscopy. For B. subtilis, DNA longevity decreased in experiments with higher levels of SiO2 (1000 and 3000 p.p.m.), in comparison to zero or low (100 p.p.m.) levels. For B. subtilis, cell viability was greatest in the absence of silica, and markedly decreased in the presence of any concentration of silica. Survival of Escherichia coli cells, on the other hand, was not sensitive to silica in the solution. All cells died at similar rates over the 180 days they were monitored, decreasing to about 1% survival. DNA longevity for E. coli did appear to be enhanced to some degree by the presence of 1000 p.p.m. silica, but higher or lower concentrations showed no increased longevity in comparison to the no-silica control. Overall, findings of this study do not support the hypothesis that siliceous environments provide enhanced protection and preservation of DNA over time. However, results of this study do provide guidelines on the persistence of DNA that might be expected in modern silica-rich environments, which may be an important factor for proper characterization of present-day microbial communities.


Subject(s)
Bacillus subtilis/drug effects , DNA, Bacterial/isolation & purification , Escherichia coli K12/drug effects , RNA, Bacterial/isolation & purification , RNA, Ribosomal/isolation & purification , Silicon Dioxide/pharmacology , Anti-Bacterial Agents/pharmacology , Crystallization , Environmental Microbiology , Microbial Viability , Microscopy , Polymerase Chain Reaction , Time Factors
2.
Astrobiology ; 6(5): 735-813, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17067259

ABSTRACT

The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Each section includes a brief overview of a topic and a short list of readable and important literature for those interested in deeper knowledge. Because of the great diversity of material, each section was written by a different author with a different expertise. Contributors, authors, and editors are listed at the beginning, along with a list of those chapters and sections for which they were responsible. We are deeply indebted to the NASA Astrobiology Institute (NAI), in particular to Estelle Dodson, David Morrison, Ed Goolish, Krisstina Wilmoth, and Rose Grymes for their continued enthusiasm and support. The Primer came about in large part because of NAI support for graduate student research, collaboration, and inclusion as well as direct funding. We have entitled the Primer version 1 in hope that it will be only the first in a series, whose future volumes will be produced every 3-5 years. This way we can insure that the Primer keeps up with the current state of research. We hope that it will be a great resource for anyone trying to stay abreast of an ever-changing field.


Subject(s)
Astronomy , Exobiology , Origin of Life , Planets , Astronomical Phenomena , Biological Evolution
3.
Astrobiology ; 1(1): 25-55, 2001.
Article in English | MEDLINE | ID: mdl-12448994

ABSTRACT

Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.


Subject(s)
Extraterrestrial Environment , Mars , Minerals , Exobiology/methods , Humans , Life , Robotics , Space Flight
4.
Astrobiology ; 1(1): 111-23, 2001.
Article in English | MEDLINE | ID: mdl-12448998

ABSTRACT

Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems. Terrestrial hematite deposits proposed as possible analogs for hematite deposits on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We report the potential for long-term preservation of microfossils by iron oxide mineralization in specimens of the approximately 2,100-Ma banded iron deposit of the Gunflint Formation, Canada. Scanning and analytical electron microscopy reveals micrometer-scale rods, spheres, and filaments consisting predominantly of iron and oxygen with minor carbon. We interpret these objects as microbial cells permineralized by an iron oxide, presumably hematite. The confirmation of ancient martian microbial life in hematite deposits will require the return of samples to terrestrial laboratories. A hematite-rich deposit composed of aqueous iron oxide precipitates may thus prove to be a prime site for future sample return.


Subject(s)
Exobiology/methods , Extraterrestrial Environment , Ferric Compounds/analysis , Fossils , Mars , Minerals/analysis , Bacterial Physiological Phenomena , Life
SELECTION OF CITATIONS
SEARCH DETAIL
...