Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Radiol Prot ; 42(3)2022 09 15.
Article in English | MEDLINE | ID: mdl-35940166

ABSTRACT

The goal of the present study was to propose a set of preliminary regional diagnostic reference levels (DRLs) for pediatric interventional cardiology (IC) procedures in Latin America and the Caribbean countries, classified by age and weight groups. The study was conducted in the framework of the Optimization of Protection in Pediatric Interventional Radiology in Latin America and the Caribbean program coordinated by the World Health Organization and the Pan American Health Organization in cooperation with the International Atomic Energy Agency. The first step of the program was focused on pediatric IC. Dose data from diagnostic and therapeutic procedures were collected between December 2020 and December 2021. Regional DRLs were set as the third quartile of patient dose data (kerma area product) collected in 18 hospitals from 10 countries in an initial sample of 968 procedures. DRLs were set for four age bands and five weight ranges. The values obtained for the four age bands (<1 yr, 1 to <5 yr, 5 to <10 yr and 10 to <16 yr) were 2.9, 6.1, 8.8 and 14.4 Gy cm2for diagnostic procedures, and 4.0, 5.0, 10.0 and 38.1 Gy cm2for therapeutic procedures, respectively. The values obtained for the five weight bands (<5 kg, 5 to <15 kg, 15 to <30 kg, 30 to <50 kg and 50 to <80 kg) were 3.0, 4.5, 8.1, 9.2 and 26.8 Gy cm2for diagnostic procedures and 3.7, 4,3, 7.3, 16.1 and 53.4 Gy cm2for therapeutic procedures, respectively. While initial data were collected manually as patient dose management systems (DMSs) were not available in most of the hospitals involved in the program, a centralized automatic DMS for the collection and management of patient dose indicators has now been introduced and is envisaged to increase the sample size. The possibility of alerting on high dose values and introducing corrective actions will help in optimization.


Subject(s)
Cardiology , Diagnostic Reference Levels , Cardiology/methods , Child , Fluoroscopy , Humans , Latin America , Radiation Dosage , Radiography, Interventional/methods , Radiology, Interventional , Reference Values
2.
Radiat Prot Dosimetry ; 177(3): 223-242, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28419323

ABSTRACT

The main objective of this work is to simulate the X-ray scattered spectra by different pediatric phantoms (simulation of children subjected to barium meal procedures) to calculate an energy correction factor (ECF) to the reading of thermoluminescent dosimeters (TLDs). To perform this evaluation, the TLDs were positioned over three areas in two occupational workers: eyes, thyroid and hands. The Geant4 toolkit was used to define the spectra collected by TLDs, making possible to calculate the ECF. This work was developed in two stages: (1) evaluation of scattered spectra by different standard phantoms (newborn, 1, 5 and 10 years old); (2) definition of the ECF to the absorbed energy by each TLD. Geant4 shows to be a good toolkit to calculate the ECF and among the different characteristics evaluated, in this work, the TLD position and acceleration voltages are the most significant parameters that may influence the ECF calculated.


Subject(s)
Occupational Exposure/analysis , Pediatrics/methods , Radiation Exposure , Thermoluminescent Dosimetry/instrumentation , Barium Sulfate/administration & dosage , Child , Child, Preschool , Eye/radiation effects , Fluoroscopy , Hand/radiation effects , Humans , Infant , Infant, Newborn , Monte Carlo Method , Phantoms, Imaging , Scattering, Radiation , Thyroid Gland/radiation effects
3.
Appl Radiat Isot ; 70(7): 1407-10, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22280793

ABSTRACT

This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year).

4.
Appl Radiat Isot ; 70(7): 1310-2, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22112593

ABSTRACT

Since the earliest works proposing the use of protons for imaging, the main advantage of protons over X-rays was expected to be a result of the specific property of the proton flux dropping off very steeply at the end of the particle range. This idea was declared but was not checked. In the present work, this assumption was investigated using the Monte Carlo simulation for the case of registration of protons with a thin detector.

5.
Nucl Sci Eng ; 132(1): 1-15, 1999 May.
Article in English | MEDLINE | ID: mdl-11989488

ABSTRACT

Neutron fluences have been measured from 155 MeV/nucleon 4He and 12C ions stopping in an Al target at laboratory angles between 10 and 160 deg. The resultant spectra were integrated over angle and energy above 10 MeV to produce total neutron yields. Comparison of the two systems shows that approximately two times as many neutrons are produced from 155 MeV/nucleon 4He stopping in Al and 155 MeV/nucleon 12C stopping in Al. Using an energy-dependent geometric cross-section formula to calculate the expected number of primary nuclear interactions shows that the 12C + Al system has, within uncertainties, the same number of neutrons per interaction (0.99 +/- 0.03) as does the 4He + Al system (1.02 +/- 0.04), despite the fact that 12C has three times as many neutrons as does 4He. Energy and angular distributions for both systems are also reported. No major differences can be seen between the two systems in those distributions, except for the overall magnitude. Where possible, the 4He + Al spectra are compared with previously measured spectra from 160 and 177.5 MeV/nucleon 4He interactions in a variety of stopping targets. The reported spectra are consistent with previously measured spectra. The data were acquired to provide data applicable to problems dealing with the determination of the radiation risk to humans engaged in long-term missions in space; however, the data are also of interest for issues related to the determination of the radiation environment in high-altitude flight, with shielding at high-energy heavy-ion accelerators and with doses delivered outside tumor sites treated with high-energy hadronic beams.


Subject(s)
Aluminum , Carbon , Elementary Particle Interactions , Helium , Neutrons , Radiation Protection , Altitude , Cosmic Radiation , Cyclotrons , Elementary Particles , Nuclear Physics , Radiation Monitoring/instrumentation , Space Flight , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...