Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38909634

ABSTRACT

BACKGROUND: The Spike protein mutation of SARS-CoV-2 led to decreased protective effect of various vaccines and monoclonal antibodies, suggesting that blocking SARS-CoV-2 infection by targeting host factors would make the therapy more resilient against virus mutations. Angiotensin converting enzyme 2 (ACE2) is the host receptor of SARS-CoV-2 and its variants, as well as many other coronaviruses. Down-regulation of ACE2 expression in the respiratory tract may prevent viral infection. Antisense oligonucleotides (ASOs) can be rationally designed based on sequence data, require no delivery system, and can be administered locally. OBJECTIVE: We sought to design ASOs that can block SARS-CoV-2 by down-regulating ACE2 in human airway. METHODS: ACE2-targeting ASOs were designed using a bioinformatic method and screened in cell lines. Human primary nasal epithelial cells cultured at the air-liquid interface and humanized ACE2 mice were used to detect the ACE2 reduction levels and the safety of ASOs. ASOs pretreated nasal epithelial cells and mice were infected and then used to detect the viral infection levels. RESULTS: ASOs reduced ACE2 expression on mRNA and protein level in cell lines and in human nasal epithelial cells. Furthermore they efficiently suppressed virus replication of three different SARS-CoV-2 variants in human nasal epithelial cells. In vivo, ASOs also down-regulated human ACE2 in humanized ACE2 mice and thereby reduced viral load, histopathological changes in lungs, and they increased survival of mice. CONCLUSION: ACE2-targeting ASOs can effectively block SARS-COV-2 infection. Our study provides a new approach for blocking SARS-CoV-2 and other ACE2-targeting virus in high-risk populations.

2.
Sportverletz Sportschaden ; 35(1): 18-23, 2021 03.
Article in English | MEDLINE | ID: mdl-30791084

ABSTRACT

BACKGROUND: Continuous passive motion (CPM) and active knee joint motion devices are commonly applied after various surgical procedures. Despite the growing use of active motion devices, there is a paucity of data comparing plantar loads between the different mobilization techniques. The aim of this study was to investigate foot loads during knee joint mobilization in continuous passive and active knee joint motion devices and to compare this data to the physiological load of full weight-bearing. PATIENTS/MATERIAL AND METHODS: Fifteen healthy participants (7 women and 8 men, 25 ±â€Š3 years, 66 ±â€Š6 kg, 175 ±â€Š10 cm, BMI 21.9 ±â€Š2) were recruited. Plantar loads were measured via dynamic pedobarography using a continuous passive motion device (ARTROMOT-K1, ORMED GmbH, Freiburg, Germany) and an active motion device (CAMOped, OPED AG, Cham, Switzerland), each with a restricted range of motion of 0-0-90° (ex/flex) and free ROM for the knee joint. For the active motion device, cycles were performed at four different resistance levels (0-III). Data were assessed using the pedar® X system (Novel Inc., Munich, Germany), which monitors loads from the foot-sole interface. Force values were compared between motion devices and normal gait, which served as the reference for conditions of full weight-bearing. P-values of < 0.05 were considered statistically significant. RESULTS: Normal gait revealed peak forces of 694 ±â€Š96 N, defined as 100 %. The CPM device produced plantar forces of less than 1.5 N. Using the active motion device in the setting of 0-0-90° produced foot loads of < 1.5 N (resistance 0-II) and 3.4 ±â€Š9.3 N with a resistance of III (p < 0.001). Conditions of free ROM resulted in foot loads of 4.5 ±â€Š4.5 N (resistance 0), 7.7 ± 10.7 N (resistance I), 6.7 ±â€Š10.4 (resistance II) and 6.7 ±â€Š6.9 N with a resistance of III (p < 0.001), corresponding to 0.6 %, 1.1 %, 1.0 % and 1.0 % of full weight-bearing, respectively. CONCLUSION: Motion exercises of the knee joint can be performed both with passive and active devices in accordance with strict weight-bearing restrictions, which are often recommended by surgeons. Also, active motion devices can be used when the ankle joint or foot have to be offloaded. Further studies assessing intraarticular joint load conditions have to be performed to confirm the findings obtained in this study.


Subject(s)
Foot , Knee Joint , Female , Germany , Humans , Male , Range of Motion, Articular , Switzerland
3.
Mol Ther Nucleic Acids ; 21: 656-669, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32739778

ABSTRACT

The adenosine axis contributes to the suppression of antitumor immune responses. The ectonucleotidase CD39 degrades extracellular adenosine triphosphate (ATP) to adenosine monophosphate (AMP), which is degraded to adenosine by CD73. Adenosine binds to, e.g., the A2a receptor (A2aR), which reportedly suppresses effector immune cells. We investigated effects of ATP, AMP, and adenosine analogs on T cell proliferation, apoptosis, and proinflammatory cytokine secretion. CD39 and CD73 expression were suppressed using antisense oligonucleotides (ASOs), and A2aR was blocked using small molecules. Addition of ATP to T cells reduced proliferation and induced apoptosis. Intriguingly, those effects were reverted by suppression of CD39 and/or CD73 expression but not A2aR inhibition. Adenosine analogs did not suppress proliferation but inhibited secretion of proinflammatory cytokines. Here, we suggest that suppression of T cell proliferation is not directly mediated by A2aR but by intracellular downstream metabolites of adenosine, as blockade of the equilibrative nucleoside transporter (ENT) or adenosine kinase rescued proliferation and prevented induction of apoptosis. In conclusion, adenosine might primarily affect cytokine secretion directly via adenosine receptors, whereas adenosine metabolites might impair T cell proliferation and induce apoptosis. Therefore, inhibition of CD39 and/or CD73 has evident advantages over A2aR blockade to fully revert suppression of antitumor immune responses by the adenosine axis.

4.
Cancer Immunol Immunother ; 69(1): 57-67, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31802183

ABSTRACT

Tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade attack by the immune system. Despite promising success with blockade of immune checkpoints like PD-1 the majority of patients does not respond to current immunotherapies. The degradation of tryptophan into immunosuppressive kynurenine is an important immunosuppressive pathway. Recent attempts to target the key enzymes of this pathway-IDO1 and TDO2-have so far failed to show therapeutic benefit in the clinic, potentially caused by insufficient target engagement. We, therefore, sought to add an alternative, highly efficient approach to block the degradation of tryptophan by inhibiting the expression of IDO1 and TDO2 using locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs). We show that LNA-modified ASOs can profoundly inhibit the expression of IDO1 and TDO2 in cancer cells in vitro without using a transfection reagent with IC50 values in the sub-micromolar range. We furthermore measured kynurenine production by ASO-treated cancer cells in vitro and observed potently reduced kynurenine levels. Accordingly, inhibiting IDO1 expression in cancer cells in an in vitro system leads to increased proliferation of activated T cells in coculture. We furthermore show that combined treatment of cancer cells in vitro with IDO1-specific ASOs and small molecule inhibitors can reduce the production of kynurenine by cancer cells in a synergistic manner. In conclusion, we propose that a combination of LNA-modified ASOs and small molecule inhibitors should be considered as a strategy for efficient blockade of the degradation of tryptophan into kynurenine in cancer immunotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Neoplasms/therapy , Oligonucleotides, Antisense/pharmacology , Tryptophan Oxygenase/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Immunotherapy/methods , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inhibitory Concentration 50 , Kynurenine/immunology , Kynurenine/metabolism , Lymphocyte Activation/drug effects , Neoplasms/immunology , Oligonucleotides/administration & dosage , Oligonucleotides/chemistry , Oligonucleotides, Antisense/chemistry , T-Lymphocytes/immunology , Tryptophan/immunology , Tryptophan/metabolism , Tryptophan Oxygenase/metabolism
5.
J Immunother Cancer ; 7(1): 67, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30871609

ABSTRACT

BACKGROUND: Cancer cells are known to develop mechanisms to circumvent effective anti-tumor immunity. The two ectonucleotidases CD39 and CD73 are promising drug targets, as they act in concert to convert extracellular immune-stimulating ATP to adenosine. CD39 is expressed by different immune cell populations as well as cancer cells of different tumor types and supports the tumor in escaping immune recognition and destruction. Thus, increasing extracellular ATP and simultaneously reducing adenosine concentrations in the tumor can lead to effective anti-tumor immunity. METHODS: We designed locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) with specificity for human or mouse CD39 that do not need a transfection reagent or delivery system for efficient target knockdown. Knockdown efficacy of ASOs on mRNA and protein level was investigated in cancer cell lines and in primary human T cells. The effect of CD39 knockdown on ATP-degrading activity was evaluated by measuring levels of ATP in tumor cell supernatants and analysis of T cell proliferation in the presence of extracellular ATP. The in vivo effects of CD39-specific ASOs on target expression, anti-tumor immune responses and on tumor growth were analyzed in syngeneic mouse tumor models using multi-color flow cytometry. RESULTS: CD39-specific ASOs suppressed expression of CD39 mRNA and protein in different murine and human cancer cell lines and in primary human T cells. Degradation of extracellular ATP was strongly reduced by CD39-specific ASOs. Strikingly, CD39 knockdown by ASOs was associated with improved CD8+ T cell proliferation. Treatment of tumor-bearing mice with CD39-specific ASOs led to dose-dependent reduction of CD39-protein expression in regulatory T cells (Tregs) and tumor-associated macrophages. Moreover, frequency of intratumoral Tregs was substantially reduced in CD39 ASO-treated mice. As a consequence, the ratio of CD8+ T cells to Tregs in tumors was improved, while PD-1 expression was induced in CD39 ASO-treated intratumoral CD8+ T cells. Consequently, CD39 ASO treatment demonstrated potent reduction in tumor growth in combination with anti-PD-1 treatment. CONCLUSION: Targeting of CD39 by ASOs represents a promising state-of-the art therapeutic approach to improve immune responses against tumors.


Subject(s)
Apyrase/genetics , Gene Silencing , Immunity/genetics , Neoplasms/genetics , Neoplasms/immunology , Oligonucleotides, Antisense/genetics , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cells, Cultured , Disease Models, Animal , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Neoplasms/pathology , Oligonucleotides, Antisense/administration & dosage , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...