Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 4333, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25007881

ABSTRACT

Spin currents have an important role in many proposed spintronic devices, as they govern the switching process of magnetic bits in random access memories or drive domain wall motion in magnetic shift registers. The generation of these spin currents has to be fast and energy efficient for realization of these envisioned devices. Recently it has been shown that femtosecond pulsed-laser excitation of thin magnetic films creates intense and ultrafast spin currents. Here we utilize this method to change the orientation of the magnetization in a magnetic bilayer by spin-transfer torque on sub-picosecond timescales. By analysing the dynamics of the magnetic bilayer after laser excitation, the rich physics governing ultrafast spin-transfer torque are elucidated opening up new pathways to ultrafast magnetization reversal, but also providing a new method to quantify optically induced spin currents generated on femtosecond timescales.

2.
Phys Rev Lett ; 110(21): 217204, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745920

ABSTRACT

We investigate a recent controversy in ultrafast magnetization dynamics by comparing the demagnetization rates from two frequently used but competing descriptions for finite temperature magnetism, namely a rigid band structure Stoner-like approach and a system of localized spins. The calculations on the localized spin system show a demagnetization rate and time comparable to experimentally obtained values, whereas the rigid band approach yields negligible demagnetization, even when the microscopic spin-flip process is assumed to be instantaneous. This shows that rigid band structure calculations will never be in quantitative agreement with experiments, irrespective of the investigated microscopic scattering mechanism.

3.
Nat Commun ; 3: 847, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22617287

ABSTRACT

Domain wall motion in materials exhibiting perpendicular magnetic anisotropy has been the subject of intensive research because of its large potential for future spintronic devices. Recently, it has been shown that perpendicular anisotropy of thin films can be influenced by electric fields. Voltage-controlled magnetic switching has already been realized, which is envisioned to lead to low-power logic and memory devices. Here we demonstrate a radically new application of this effect, namely control of domain wall motion by electric fields. We show that an applied voltage perpendicular to a Co or CoB wire can significantly increase or decrease domain wall velocities. Velocity modification over an order of magnitude is demonstrated (from 0.4 to 4 µm s(-1)), providing a first step towards electrical control of domain wall devices. This opens up possibilities of real-time and local control of domain wall motion by electric fields at extremely low power cost.

4.
Phys Rev Lett ; 106(19): 196802, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668186

ABSTRACT

The dependence of organic magnetoresistance (OMAR) on the orientation of the magnetic field has been investigated. In contrast with previous claims, a finite and systematic change in magnitude is observed when the orientation of the field is changed with respect to the sample. It is demonstrated that, to explain these effects, spin-spin interactions have to be included in the models previously suggested for OMAR. Dipole coupling and exchange coupling are introduced in combination with either an anisotropy of the orientation of the spin pairs or an anisotropy in the hyperfine fields.

5.
Phys Rev Lett ; 106(19): 197402, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668199

ABSTRACT

We explore the magnetoelectroluminescence (MEL) of organic light-emitting diodes by evaluating the magnetic-field dependent fraction of singlet excitons formed. We use two- and multisite polaron-hopping models with spin mixing by hyperfine fields and different singlet and triplet exciton formation rates k(S) and k(T). A huge MEL is predicted when exciton formation is in competition with spin mixing and when k(T) is significantly larger than k(S). This competition also leads to a low-field structure in the MEL that is in agreement with recent experiments.

6.
Biosens Bioelectron ; 24(7): 1937-41, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19022651

ABSTRACT

We demonstrate that a rotating magnetic field can be used to apply a controlled torque on superparamagnetic beads which leads to a tunable bead rotation frequency in fluid. Smooth rotation is obtained for field rotation frequencies many orders of magnitude higher than the bead rotation frequency. A quantitative model is developed, based on results from a comprehensive set of experiments at different field strengths and frequencies. At low frequencies (<10Hz), rotation is due to a small permanent magnetic moment in the bead. At high frequencies (kHz-MHz), the torque results from a phase lag between the applied field and the induced magnetic moment, caused by the non-zero relaxation time of magnetic nanoparticles in the bead. The control of torque and rotation will enable novel functional assays in bead-based biosensors.


Subject(s)
Biosensing Techniques/instrumentation , Immunomagnetic Separation/instrumentation , Magnetics/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Equipment Design , Equipment Failure Analysis , Immunomagnetic Separation/methods , Reproducibility of Results , Sensitivity and Specificity , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...