Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36985828

ABSTRACT

The need to guarantee the geographical origin of food samples has become imperative in recent years due to the increasing amount of food fraud. Stable isotope ratio analysis permits the characterization and origin control of foodstuffs, thanks to its capability to discriminate between products having different geographical origins and derived from different production systems. The Framework 6 EU-project "TRACE" generated hydrogen (2H/1H), carbon (13C/12C), nitrogen (15N/14N), and sulphur (34S/32S) isotope ratio data from 227 authentic beef samples. These samples were collected from a total of 13 sites in eight countries. The stable isotope analysis was completed by combining IRMS with a thermal conversion elemental analyzer (TC/EA) for the analysis of δ(2H) and an elemental analyzer (EA) for the determination of δ(13C), δ(15N), and δ(34S). The results show the potential of this technique to detect clustering of samples due to specific environmental conditions in the areas where the beef cattle were reared. Stable isotope measurements highlighted statistical differences between coastal and inland regions, production sites at different latitudes, regions with different geology, and different farming systems related to the diet the animals were consuming (primarily C3- or C4-based or a mixed one).


Subject(s)
Meat , Animals , Cattle , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Meat/analysis
2.
J Agric Food Chem ; 58(1): 570-7, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-20000737

ABSTRACT

H, C, and O stable isotope ratios and the elemental profile of 267 olive oils and 314 surface waters collected from 8 European sites are presented and discussed. The aim of the study was to investigate if olive oils produced in areas with different climatic and geological characteristics could be discriminated on the basis of isotopic and elemental data. The stable isotope ratios of H, C, and O of olive oils and the ratios of H and O of the relevant surface waters correlated to the climatic (mainly temperature) and geographical (mainly latitude and distance from the coast) characteristics of the provenance sites. It was possible to characterize the geological origin of the olive oils by using the content of 14 elements (Mg, K, Ca, V, Mn, Zn, Rb, Sr, Cs, La, Ce, Sm, Eu, U). By combining the 3 isotopic ratios with the 14 elements and applying a multivariate discriminant analysis, a good discrimination between olive oils from 8 European sites was achieved, with 95% of the samples correctly classified into the production site.


Subject(s)
Carbon Isotopes/analysis , Deuterium/analysis , Oxygen Isotopes/analysis , Plant Oils/chemistry , Elements , Europe , Isotope Labeling , Olive Oil , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...