Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Microbiome ; 11(1): 159, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491398

ABSTRACT

BACKGROUND: Cervicovaginal inflammation has been linked to negative reproductive health outcomes including the acquisition of HIV, other sexually transmitted infections, and cervical carcinogenesis. While changes to the vaginal microbiome have been linked to genital inflammation, the molecular relationships between the functional components of the microbiome with cervical immunology in the reproductive tract are understudied, limiting our understanding of mucosal biology that may be important for reproductive health. RESULTS: In this study, we used a multi'-omics approach to profile cervicovaginal samples collected from 43 Canadian women to characterize host, immune, functional microbiome, and metabolome features of cervicovaginal inflammation. We demonstrate that inflammation is associated with lower amounts of L. crispatus and higher levels of cervical antigen-presenting cells (APCs). Proteomic analysis showed an upregulation of pathways related to neutrophil degranulation, complement, and leukocyte migration, with lower levels of cornified envelope and cell-cell adherens junctions. Functional microbiome analysis showed reductions in carbohydrate metabolism and lactic acid, with increases in xanthine and other metabolites. Bayesian network analysis linked L. crispatus with glycolytic and nucleotide metabolism, succinate and xanthine, and epithelial proteins SCEL and IVL as major molecular features associated with pro-inflammatory cytokines and increased APCs. CONCLUSIONS: This study identified key molecular and immunological relationships with cervicovaginal inflammation, including higher APCs, bacterial metabolism, and proteome alterations that underlie inflammation. As APCs are involved in HIV transmission, parturition, and cervical cancer progression, further studies are needed to explore the interactions between these cells, bacterial metabolism, mucosal immunity, and their relationship to reproductive health. Video Abstract.


Subject(s)
HIV Infections , Humans , Female , HIV Infections/microbiology , Proteomics , Bayes Theorem , Canada , Vagina/microbiology , Inflammation/metabolism , Cytokines , Antigen-Presenting Cells/metabolism , Xanthines/metabolism
2.
J Antimicrob Chemother ; 78(Suppl 1): i8-i16, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37130584

ABSTRACT

OBJECTIVES: To assess the antimicrobial susceptibility of 14 138 invasive Streptococcus pneumoniae isolates collected in Canada from 2011 to 2020. METHODS: Antimicrobial susceptibility testing was performed using the CLSI M07 broth microdilution reference method. MICs were interpreted using 2022 CLSI M100 breakpoints. RESULTS: In 2020, 90.1% and 98.6% of invasive pneumococci were penicillin-susceptible when MICs were interpreted using CLSI meningitis or oral and non-meningitis breakpoints, respectively; 96.9% (meningitis breakpoint) and 99.5% (non-meningitis breakpoint) of isolates were ceftriaxone-susceptible, and 99.9% were levofloxacin-susceptible. Numerically small, non-temporal, but statistically significant differences (P < 0.05) in the annual percentage of isolates susceptible to four of the 13 agents tested was observed across the 10-year study: chloramphenicol (4.4% difference), trimethoprim-sulfamethoxazole (3.9%), penicillin (non-meningitis breakpoint, 2.7%) and ceftriaxone (meningitis breakpoint, 2.7%; non-meningitis breakpoint, 1.2%). During the same period, annual differences in percent susceptible values for penicillin (meningitis and oral breakpoints) and all other agents did not achieve statistical significance. The percentage of isolates with an MDR phenotype (resistance to ≥3 antimicrobial classes) in 2011 and 2020 (8.5% and 9.4%) was not significantly different (P = 0.109), although there was a significant interim decrease observed between 2011 and 2015 (P < 0.001) followed by a significant increase between 2016 and 2020 (P < 0.001). Statistically significant associations were observed between resistance rates to most antimicrobial agents included in the MDR analysis (penicillin, clarithromycin, clindamycin, doxycycline, trimethoprim/sulfamethoxazole and chloramphenicol) and patient age, specimen source, geographic location in Canada or concurrent resistance to penicillin or clarithromycin, but not biological sex of patients. Given the large isolate collection studied, statistical significance did not necessarily imply clinical or public health significance in some analyses. CONCLUSIONS: Invasive pneumococcal isolates collected in Canada from 2011 to 2020 generally exhibited consistent in vitro susceptibility to commonly tested antimicrobial agents.


Subject(s)
Anti-Infective Agents , Pneumococcal Infections , Humans , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Clarithromycin , Ceftriaxone/pharmacology , Pneumococcal Infections/epidemiology , Canada/epidemiology , Penicillins/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination , Microbial Sensitivity Tests , Chloramphenicol , Drug Resistance, Bacterial
3.
J Antimicrob Chemother ; 78(Suppl 1): i17-i25, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37130586

ABSTRACT

OBJECTIVES: To investigate the levels of MDR in the predominant serotypes of invasive Streptococcus pneumoniae isolated in Canada over a 10 year period. METHODS: All isolates were serotyped and had antimicrobial susceptibility testing performed, in accordance with CLSI guidelines (M07-11 Ed., 2018). Complete susceptibility profiles were available for 13 712 isolates. MDR was defined as resistance to three or more classes of antimicrobial agents (penicillin MIC ≥2 mg/L defined as resistant). Serotypes were determined by Quellung reaction. RESULTS: In total, 14 138 invasive isolates of S. pneumoniae were tested in the SAVE study (S. pneumoniae Serotyping and Antimicrobial Susceptibility: Assessment for Vaccine Efficacy in Canada), a collaboration between the Canadian Antimicrobial Resistance Alliance and Public Health Agency of Canada-National Microbiology Laboratory. The rate of MDR S. pneumoniae in SAVE was 6.6% (902/13 712). Annual rates of MDR S. pneumoniae decreased between 2011 and 2015 (8.5% to 5.7%) and increased between 2016 and 2020 (3.9% to 9.4%). Serotypes 19A and 15A were the most common serotypes demonstrating MDR (25.4% and 23.5% of the MDR isolates, respectively); however, the serotype diversity index increased from 0.7 in 2011 to 0.9 in 2020 with a statistically significant linear increasing trend (P < 0.001). In 2020, MDR isolates were frequently serotypes 4 and 12F in addition to serotypes 15A and 19A. In 2020, 27.3%, 45.5%, 50.5%, 65.7% and 68.7% of invasive MDR S. pneumoniae were serotypes included in the PCV10, PCV13, PCV15, PCV20 and PPSV23 vaccines, respectively. CONCLUSIONS: Although current vaccine coverage of MDR S. pneumoniae in Canada is high, the increasing diversity of serotypes observed among the MDR isolates highlights the ability of S. pneumoniae to rapidly evolve.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Serogroup , Pneumococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Canada/epidemiology , Microbial Sensitivity Tests , Serotyping , Pneumococcal Vaccines
4.
J Antimicrob Chemother ; 78(Suppl 1): i26-i36, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37130587

ABSTRACT

OBJECTIVES: To investigate the lineages and genomic antimicrobial resistance (AMR) determinants of the 10 most common pneumococcal serotypes identified in Canada during the five most recent years of the SAVE study, in the context of the 10-year post-PCV13 period in Canada. METHODS: The 10 most common invasive Streptococcus pneumoniae serotypes collected by the SAVE study from 2016 to 2020 were 3, 22F, 9N, 8, 4, 12F, 19A, 33F, 23A and 15A. A random sample comprising ∼5% of each of these serotypes collected during each year of the full SAVE study (2011-2020) were selected for whole-genome sequencing (WGS) using the Illumina NextSeq platform. Phylogenomic analysis was performed using the SNVPhyl pipeline. WGS data were used to identify virulence genes of interest, sequence types, global pneumococcal sequence clusters (GPSC) and AMR determinants. RESULTS: Of the 10 serotypes analysed in this study, six increased significantly in prevalence from 2011 to 2020: 3, 4, 8, 9N, 23A and 33F (P ≤ 0.0201). Serotypes 12F and 15A remained stable in prevalence over time, while serotype 19A decreased in prevalence (P < 0.0001). The investigated serotypes represented four of the most prevalent international lineages causing non-vaccine serotype pneumococcal disease in the PCV13 era: GPSC3 (serotypes 8/33F), GPSC19 (22F), GPSC5 (23A) and GPSC26 (12F). Of these lineages, GPSC5 isolates were found to consistently possess the most AMR determinants. Commonly collected vaccine serotypes 3 and 4 were associated with GPSC12 and GPSC27, respectively. However, a more recently collected lineage of serotype 4 (GPSC192) was highly clonal and possessed AMR determinants. CONCLUSIONS: Continued genomic surveillance of S. pneumoniae in Canada is essential to monitor for the appearance of new and evolving lineages, including antimicrobial-resistant GPSC5 and GPSC162.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Serogroup , Streptococcus pneumoniae/genetics , Genomics , Canada/epidemiology , Phylogeny , Pneumococcal Infections/epidemiology , Pneumococcal Vaccines
5.
J Antimicrob Chemother ; 78(Suppl 1): i37-i47, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37130588

ABSTRACT

BACKGROUND: As pneumococci evolve under vaccine, antimicrobial and other selective pressures, it is important to track isolates covered by established (PCV10, PCV13 and PPSV23) and new (PCV15 and PCV20) vaccine formulations. OBJECTIVES: To compare invasive pneumococcal disease (IPD) isolates from serotypes covered by PCV10, PCV13, PCV15, PCV20 and PPSV23, collected in Canada from 2011 to 2020, by demographic category and antimicrobial resistance phenotype. METHODS: IPD isolates from the SAVE study were initially collected by members of the Canadian Public Health Laboratory Network (CPHLN) as part of a collaboration between the Canadian Antimicrobial Resistance Alliance (CARA) and the Public Health Agency of Canada (PHAC). Serotypes were determined by quellung reaction, and antimicrobial susceptibility testing was performed using the CLSI broth microdilution method. RESULTS: A total of 14 138 invasive isolates were collected from 2011 to 2020, with 30.7% of isolates covered by the PCV13 vaccine, 43.6% of isolates covered by the PCV15 vaccine (including 12.9% non-PCV13 serotypes 22F and 33F), and 62.6% of isolates covered by the PCV20 vaccine (including 19.0% non-PCV15 serotypes 8, 10A, 11A, 12F and 15B/C). Non-PCV20 serotypes 2, 9N, 17F and 20, but not 6A (present in PPSV23) represented 8.8% of all IPD isolates. Higher-valency vaccine formulations covered significantly more isolates by age, sex, region and resistance phenotype including MDR isolates. Coverage of XDR isolates did not significantly differ between vaccine formulations. CONCLUSIONS: When compared with PCV13 and PCV15, PCV20 covered significantly more IPD isolates stratified by patient age, region, sex, individual antimicrobial resistance phenotypes and MDR phenotype.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Serogroup , Canada/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines
6.
PLoS One ; 17(1): e0262355, 2022.
Article in English | MEDLINE | ID: mdl-35025956

ABSTRACT

BACKGROUND: The microbiota of the lower female genital tract plays an important role in women's health. Microbial profiling using the chaperonin60 (cpn60) universal target (UT) improves resolution of vaginal species associated with negative health outcomes compared to the more commonly used 16S ribosomal DNA target. However, the choice of DNA extraction and PCR product purification methods may bias sequencing-based microbial studies and should be optimized for the sample type and molecular target used. In this study, we compared two commercial DNA extraction kits and two commercial PCR product purification kits for the microbial profiling of cervicovaginal samples using the cpn60 UT. METHODS: DNA from cervicovaginal secretions and vaginal lavage samples as well as mock community standards were extracted using either the specialized QIAamp DNA Microbiome Kit, or the standard DNeasy Blood & Tissue kit with enzymatic pre-treatment for enhanced lysis of gram-positive bacteria. Extracts were PCR amplified using well-established cpn60 primer sets and conditions. Products were then purified using a column-based method (QIAquick PCR Purification Kit) or a gel-based PCR clean-up method using the QIAEX II Gel Extraction Kit. Purified amplicons were sequenced with the MiSeq platform using standard procedures. The overall quality of each method was evaluated by measuring DNA yield, alpha diversity, and microbial composition. RESULTS: DNA extracted from cervicovaginal samples using the DNeasy Blood and Tissue kit, pre-treated with lysozyme and mutanolysin, resulted in increased DNA yield, bacterial diversity, and species representation compared to the QIAamp DNA Microbiome kit. The column-based PCR product purification approach also resulted in greater average DNA yield and wider species representation compared to a gel-based clean-up method. In conclusion, this study presents a fast, effective sample preparation method for high resolution cpn60 based microbial profiling of cervicovaginal samples.


Subject(s)
DNA/isolation & purification , Specimen Handling/methods , Vagina/microbiology , Bacteria/genetics , DNA, Bacterial/genetics , Female , Humans , Microbiota/genetics , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
7.
J Clin Virol ; 136: 104764, 2021 03.
Article in English | MEDLINE | ID: mdl-33636553

ABSTRACT

The current scale of public and private testing cannot be expected to meet the emerging need for higher levels of community-level and repeated screening of asymptomatic Canadians for SARS-CoV-2. Rapid point-of-care techniques are increasingly being offered to fill the gap in screening levels required to identify undiagnosed individuals with high viral loads. However, rapid, point-of-care tests often have lower sensitivity in practice. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for SARS-CoV-2 has proven sensitive and specific and provides visual results in minutes. Using a commercially available kit for RT-LAMP and primer set targetting nucleocapsid (N), we tested a blinded set of 101 archived nasopharyngeal (NP) swab samples with known RT-PCR results. RT-LAMP reactions were incubated at 65 °C for 30 min, using heat-inactivated nasopharyngeal swab sample in viral transport medium, diluted tenfold in water, as input. RT-LAMP agreed with all RT-PCR defined negatives (N = 51), and all positives with cycle threshold (Ct) less than 20 (N = 24), 65% of positives with Ct between 20-30 (N = 17), and no positives with Ct greater than 30 (N = 9). RT-LAMP requires fewer and different core components, so may not compete directly with the mainline testing workflow, preserving precious central laboratory resources for those with the greatest need. Careful messaging must be provided when using less-sensitive tests, so that people are not falsely reassured by negative results, but this caveat must be weighed against the clear benefits of reliably identifying those with high levels of virus in prioritized samples at the point of care.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction/methods , Asymptomatic Diseases , Canada , Humans , Mass Screening/methods , Nasopharynx/virology , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
8.
Can J Microbiol ; 65(4): 296-307, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30608879

ABSTRACT

Ruminiclostridium thermocellum is one of the most promising candidates for consolidated bioprocessing (CBP) of low-cost lignocellulosic materials to biofuels but it still shows poor performance in its ability to deconstruct untreated lignocellulosic substrates. One promising approach to increase R. thermocellum's rate of hydrolysis is to co-culture this cellulose-specialist with partners that possess synergistic hydrolysis enzymes and metabolic capabilities. We have created co-cultures of R. thermocellum with two hemicellulose utilizers, Ruminiclostridium stercorarium and Thermoanaerobacter thermohydrosulfuricus, both of which secrete xylanolytic enzymes and utilize the pentose oligo- and monosaccharides that inhibit R. thermocellum's hydrolysis and metabolism. When grown on milled wheat straw, the co-cultures were able to solubilize up to 58% more of the total polysaccharides than the R. thermocellum mono-culture control. Repeated passaging of the co-cultures on wheat straw yielded stable populations with reduced R. thermocellum cell numbers, indicating competition for cellodextrins released from cellulose hydrolysis, although these stabilized co-cultures were still able to outperform the mono-culture controls. Repeated passaging on Avicel cellulose also yielded stable populations. Overall, the observed synergism suggests that co-culturing R. thermocellum with other members is a viable option for increasing the rate and extent of untreated lignocellulose deconstruction by R. thermocellum for CBP purposes.


Subject(s)
Clostridium thermocellum/growth & development , Lignin/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides/metabolism , Thermoanaerobacter/growth & development , Biofuels , Cellulose/analogs & derivatives , Cellulose/metabolism , Clostridium thermocellum/metabolism , Coculture Techniques , DNA, Bacterial/genetics , Dextrins/metabolism , Hydrolysis , Real-Time Polymerase Chain Reaction , Thermoanaerobacter/metabolism
9.
J Microbiol Methods ; 136: 57-64, 2017 05.
Article in English | MEDLINE | ID: mdl-28285169

ABSTRACT

The vaginal microbiome is increasingly characterized by deep sequencing of universal genes. However, there are relatively few studies of how different specimen collection and sample storage and processing influence these molecular profiles. Here, we evaluate molecular microbial community profiles of samples collected using the HerSwab™ self-sampling device, compared to nylon swabs and under different storage conditions. In order to minimize technical variation, mixtures of 11 common vaginal bacteria in simulated vaginal fluid medium were sampled and DNA extracts prepared for massively parallel sequencing of the cpn60 universal target (UT). Three artificial mixtures imitating commonly observed vaginal microbiome profiles were easily distinguished and proportion of sequence reads correlated with the estimated proportion of the organism added to the artificial mixtures. Our results indicate that cpn60 UT amplicon sequencing quantifies the proportional abundance of member organisms in these artificial communities regardless of swab type or storage conditions, although some significant differences were observed between samples that were stored frozen and thawed prior to DNA extraction, compared to extractions from samples stored at room temperature for up to 7days. Our results indicate that an on-the-market device developed for infectious disease diagnostics may be appropriate for vaginal microbiome profiling, an approach that is increasingly facilitated by rapidly dropping deep sequencing costs.


Subject(s)
Bacteria/genetics , Chaperonin 60/genetics , Gene Targeting/methods , Microbial Consortia/genetics , Nylons/chemistry , Specimen Handling/methods , Vagina/microbiology , Bacteria/classification , Bacteria/isolation & purification , Base Sequence , Body Fluids/microbiology , DNA, Bacterial/isolation & purification , Female , High-Throughput Nucleotide Sequencing/methods , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Specimen Handling/instrumentation , Temperature
10.
Res Microbiol ; 168(9-10): 837-844, 2017.
Article in English | MEDLINE | ID: mdl-28341009

ABSTRACT

Gardnerella vaginalis was first described in 1953, and subsequently identified as the causative agent of a cluster of vaginal symptoms currently known as vaginosis. Research has so far failed to confirm whether and by which mechanism G. vaginalis initiates vaginosis, with, consequently, poor diagnostics and treatment outcomes. Recent molecular analyses of protein-coding genes demonstrate that the taxon G. vaginalis consists of at least four distinct species. This development may represent a critical turning point in clarifying ecological interactions and virulence factors contributing to symptoms and/or sequelae of vaginosis.


Subject(s)
Gardnerella vaginalis , Gram-Positive Bacterial Infections/microbiology , Vagina/microbiology , Vaginosis, Bacterial/microbiology , Female , Gardnerella vaginalis/classification , Gardnerella vaginalis/genetics , Gardnerella vaginalis/pathogenicity , Humans , RNA, Ribosomal, 16S/genetics
11.
PLoS One ; 11(1): e0146510, 2016.
Article in English | MEDLINE | ID: mdl-26751374

ABSTRACT

Increased abundance of Gardnerella vaginalis and sialidase activity in vaginal fluid is associated with bacterial vaginosis (BV), a common but poorly understood clinical entity associated with poor reproductive health outcomes. Since most women are colonized with G. vaginalis, its status as a normal member of the vaginal microbiota or pathogen causing BV remains controversial, and numerous classification schemes have been described. Since 2005, sequencing of the chaperonin-60 universal target (cpn60 UT) has distinguished four subgroups in isolate collections, clone libraries and deep sequencing datasets. To clarify potential clinical and diagnostic significance of cpn60 subgroups, we undertook phenotypic and molecular characterization of 112 G. vaginalis isolates from three continents. A total of 36 subgroup A, 33 B, 35 C and 8 D isolates were identified through phylogenetic analysis of cpn60 sequences as corresponding to four "clades" identified in a recently published study, based on sequencing 473 genes across 17 isolates. cpn60 subgroups were compared with other previously described molecular methods for classification of Gardnerella subgroups, including amplified ribosomal DNA restriction analysis (ARDRA) and real-time PCR assays designed to quantify subgroups in vaginal samples. Although two ARDRA patterns were observed in isolates, each was observed in three cpn60 subgroups (A/B/D and B/C/D). Real-time PCR assays corroborated cpn60 subgroups overall, but 13 isolates from subgroups A, B and D were negative in all assays. A putative sialidase gene was detected in all subgroup B, C and D isolates, but only in a single subgroup A isolate. In contrast, sialidase activity was observed in all subgroup B isolates, 3 (9%) subgroup C isolates and no subgroup A or D isolates. These observations suggest distinct roles for G. vaginalis subgroups in BV pathogenesis. We conclude that cpn60 UT sequencing is a robust approach for defining G. vaginalis subgroups within the vaginal microbiome.


Subject(s)
Chaperonin 60/genetics , Gardnerella vaginalis/enzymology , Neuraminidase/metabolism , Vaginosis, Bacterial/microbiology , Belgium , Body Fluids/microbiology , Canada , DNA Primers , DNA, Ribosomal/genetics , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Kenya , Microbiota , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Vagina/microbiology , Vaginosis, Bacterial/epidemiology
12.
PLoS One ; 10(8): e0135620, 2015.
Article in English | MEDLINE | ID: mdl-26266808

ABSTRACT

The vaginal microbiota is important in women's reproductive and overall health. However, the relationships between the structure, function and dynamics of this complex microbial community and health outcomes remain elusive. The objective of this study was to determine the phylogenetic range and abundance of prokaryotes in the vaginal microbiota of healthy, non-pregnant, ethnically diverse, reproductive-aged Canadian women. Socio-demographic, behavioural and clinical data were collected and vaginal swabs were analyzed from 310 women. Detailed profiles of their vaginal microbiomes were generated by pyrosequencing of the chaperonin-60 universal target. Six community state types (CST) were delineated by hierarchical clustering, including three Lactobacillus-dominated CST (L. crispatus, L. iners, L. jensenii), two Gardnerella-dominated (subgroups A and C) and an "intermediate" CST which included a small number of women with microbiomes dominated by seven other species or with no dominant species but minority populations of Streptococcus, Staphylococcus, Peptoniphilus, E. coli and various Proteobacteria in co-dominant communities. The striking correspondence between Nugent score and deep sequencing CST continues to reinforce the basic premise provided by the simpler Gram stain method, while additional analyses reveal detailed cpn60-based phylogeny and estimated abundance in microbial communities from vaginal samples. Ethnicity was the only demographic or clinical characteristic predicting CST, with differences in Asian and White women (p = 0.05). In conclusion, this study confirms previous work describing four cpn60-based subgroups of Gardnerella, revealing previously undescribed CST. The data describe the range of bacterial communities seen in Canadian women presenting with no specific vaginal health concerns, and provides an important baseline for future investigations of clinically important cohorts.


Subject(s)
Gardnerella/genetics , Vagina/microbiology , Adolescent , Adult , Canada , Female , Gardnerella/classification , Humans , Microbiota/genetics , Middle Aged , Phylogeny , Women's Health , Young Adult
13.
Proteomics ; 15(1): 16-24, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25348682

ABSTRACT

Label free quantitation by measurement of peptide fragment signal intensity (MS2 quantitation) is a technique that has seen limited use due to the stochastic nature of data dependent acquisition (DDA). However, data independent acquisition has the potential to make large scale MS2 quantitation a more viable technique. In this study we used an implementation of data independent acquisition--SWATH--to perform label free protein quantitation in a model bacterium Clostridium stercorarium. Four tryptic digests analyzed by SWATH were probed by an ion library containing information on peptide mass and retention time obtained from DDA experiments. Application of this ion library to SWATH data quantified 1030 proteins with at least two peptides quantified (∼ 40% of predicted proteins in the C. stercorarium genome) in each replicate. Quantitative results obtained were very consistent between biological replicates (R(2) ∼ 0.960). Protein quantitation by summation of peptide fragment signal intensities was also highly consistent between biological replicates (R(2) ∼ 0.930), indicating that this approach may have increased viability compared to recent applications in label free protein quantitation. SWATH based quantitation was able to consistently detect differences in relative protein quantity and it provided coverage for a number of proteins that were missed in some samples by DDA analysis.


Subject(s)
Bacterial Proteins/analysis , Clostridium/chemistry , Peptide Fragments/analysis , Proteomics/methods , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods
14.
PLoS One ; 9(8): e104260, 2014.
Article in English | MEDLINE | ID: mdl-25101643

ABSTRACT

Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes), sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199) and carbohydrate binding modules (95) were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.


Subject(s)
Carbohydrate Metabolism/physiology , Cellobiose/metabolism , Clostridium/enzymology , Glycoside Hydrolases/metabolism , Monosaccharides/metabolism , Animals , Ethanol/metabolism , Hydrogen/metabolism , Isoptera/microbiology , Species Specificity
15.
BMC Genomics ; 15: 567, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24998381

ABSTRACT

BACKGROUND: Growing interest in cellulolytic clostridia with potential for consolidated biofuels production is mitigated by low conversion of raw substrates to desired end products. Strategies to improve conversion are likely to benefit from emerging techniques to define molecular systems biology of these organisms. Clostridium stercorarium DSM8532T is an anaerobic thermophile with demonstrated high ethanol production on cellulose and hemicellulose. Although several lignocellulolytic enzymes in this organism have been well-characterized, details concerning carbohydrate transporters and central metabolism have not been described. Therefore, the goal of this study is to define an improved whole genome sequence (WGS) for this organism using in-depth molecular profiling by RNA-seq transcriptomics and tandem mass spectrometry-based proteomics. RESULTS: A paired-end Roche/454 WGS assembly was closed through application of an in silico algorithm designed to resolve repetitive sequence regions, resulting in a circular replicon with one gap and a region of 2 kilobases with 10 ambiguous bases. RNA-seq transcriptomics resulted in nearly complete coverage of the genome, identifying errors in homopolymer length attributable to 454 sequencing. Peptide sequences resulting from high-throughput tandem mass spectrometry of trypsin-digested protein extracts were mapped to 1,755 annotated proteins (68% of all protein-coding regions). Proteogenomic analysis confirmed the quality of annotation and improvement pipelines, identifying a missing gene and an alternative reading frame. Peptide coverage of genes hypothetically involved in substrate hydrolysis, transport and utilization confirmed multiple pathways for glycolysis, pyruvate conversion and recycling of intermediates. No sequences homologous to transaldolase, a central enzyme in the pentose phosphate pathway, were observed by any method, despite demonstrated growth of this organism on xylose and xylan hemicellulose. CONCLUSIONS: Complementary omics techniques confirm the quality of genome sequence assembly, annotation and error-reporting. Nearly complete genome coverage by RNA-seq likely indicates background DNA in RNA extracts, however these preps resulted in WGS enhancement and transcriptome profiling in a single Illumina run. No detection of transaldolase by any method despite xylose utilization by this organism indicates an alternative pathway for sedoheptulose-7-phosphate degradation. This report combines next-generation omics techniques to elucidate previously undefined features of substrate transport and central metabolism for this organism and its potential for consolidated biofuels production from lignocellulose.


Subject(s)
Bacterial Proteins/genetics , Clostridium/metabolism , Transcriptome , Bacterial Proteins/metabolism , Carbohydrate Metabolism/genetics , Clostridium/genetics , Gene Expression Profiling , Genome, Bacterial , Molecular Sequence Annotation , Proteomics , Pseudogenes , Sequence Analysis, RNA , Tandem Mass Spectrometry
16.
Appl Environ Microbiol ; 80(5): 1602-15, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24362431

ABSTRACT

Thermoanaerobacter spp. have long been considered suitable Clostridium thermocellum coculture partners for improving lignocellulosic biofuel production through consolidated bioprocessing. However, studies using "omic"-based profiling to better understand carbon utilization and biofuel producing pathways have been limited to only a few strains thus far. To better characterize carbon and electron flux pathways in the recently isolated, xylanolytic strain, Thermoanaerobacter thermohydrosulfuricus WC1, label-free quantitative proteomic analyses were combined with metabolic profiling. SWATH-MS proteomic analysis quantified 832 proteins in each of six proteomes isolated from mid-exponential-phase cells grown on xylose, cellobiose, or a mixture of both. Despite encoding genes consistent with a carbon catabolite repression network observed in other Gram-positive organisms, simultaneous consumption of both substrates was observed. Lactate was the major end product of fermentation under all conditions despite the high expression of gene products involved with ethanol and/or acetate synthesis, suggesting that carbon flux in this strain may be controlled via metabolite-based (allosteric) regulation or is constrained by metabolic bottlenecks. Cross-species "omic" comparative analyses confirmed similar expression patterns for end-product-forming gene products across diverse Thermoanaerobacter spp. It also identified differences in cofactor metabolism, which potentially contribute to differences in end-product distribution patterns between the strains analyzed. The analyses presented here improve our understanding of T. thermohydrosulfuricus WC1 metabolism and identify important physiological limitations to be addressed in its development as a biotechnologically relevant strain in ethanologenic designer cocultures through consolidated bioprocessing.


Subject(s)
Bacterial Proteins/metabolism , Lignin/metabolism , Thermoanaerobacter/metabolism , Fermentation , Metabolic Flux Analysis , Metabolome , Proteome/analysis
17.
Bioresour Technol ; 129: 156-63, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23238345

ABSTRACT

The use of microbial communities in the conversion of cellulosic materials to bio-ethanol has the potential to improve the economic competitiveness of this biofuel and subsequently lessen our dependency on fossil fuel-based energy sources. Interactions between functionally different microbial groups within a community can expand habitat range, including the creation of anaerobic microenvironments. Currently, research focussing on exploring the nature of the interactions occurring during cellulose degradation and ethanol production within mixed microbial communities has been limited. The aim of this study was to enrich and characterize a cellulolytic bacterial community, and determine if ethanol is a major soluble end-product. Cellulolytic activity by the community was observed in both non-reduced and pre-reduced media, with ethanol and acetate being major fermentation products. Similar results were obtained when sterile wastewater extract was provided as nutrient. Several community members showed high similarity to Clostridium species with overlapping metabolic capabilities, suggesting clostridial functional redundancy.


Subject(s)
Bioreactors/microbiology , Cellulose/metabolism , Clostridium/classification , Clostridium/metabolism , Ethanol/metabolism , Microbial Consortia/physiology , Species Specificity
18.
PLoS One ; 7(8): e43009, 2012.
Article in English | MEDLINE | ID: mdl-22900080

ABSTRACT

Bacterial vaginosis (BV), characterized by a shift of the vaginal microbiota from a Lactobacillus-dominated community to a dense biofilm containing a complex mixture of organisms, is an important risk factor in poor reproductive health outcomes. The Nugent score, based on Gram stain, is used to diagnose BV and Gardnerella vaginalis abundance in the sample is one factor determining Nugent score. A high Nugent score is indicative of BV but does not always correspond to the presence of clinical symptoms. G. vaginalis is recognized as a heterogeneous group of organisms, which can also be part of the normal, healthy vaginal microbiome. In addition, asymptomatic BV and non-Gardnerella types of BV are being recognized. In an attempt to resolve the heterogeneous group of G. vaginalis, a phylogenetic tree of cpn60 universal target sequences from G. vaginalis isolates was constructed that indicates the existence of four subgroups of G. vaginalis. This subdivision, supported by whole genome similarity calculation of representative strains using JSpecies, demonstrates that these subgroups may represent different species. The cpn60 subgroupings did not correspond with the Piot biotyping scheme, but did show consistency with ARDRA genotyping and sialidase gene presence. Isolates from all four subgroups produced biofilm in vitro. We also investigated the distribution of G. vaginalis subgroups in vaginal samples from Kenyan women with Nugent scores consistent with BV, Intermediate and Normal microbiota (n = 44). All subgroups of G. vaginalis were detected in these women, with a significant difference (z = -3.372, n = 39, p = 0.001) in frequency of G. vaginalis subgroup B between BV and Normal groups. Establishment of a quantifiable relationship between G. vaginalis subgroup distribution and clinical status could have significant diagnostic implications.


Subject(s)
Bacterial Proteins/genetics , Gardnerella vaginalis/genetics , Metagenome , Vagina/microbiology , Vaginosis, Bacterial/microbiology , Biofilms , Female , Gardnerella vaginalis/classification , Gardnerella vaginalis/isolation & purification , Genome, Bacterial , Genotype , Humans , Kenya , Neuraminidase/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Vaginosis, Bacterial/diagnosis
19.
PLoS One ; 7(7): e41217, 2012.
Article in English | MEDLINE | ID: mdl-22844440

ABSTRACT

The common but poorly understood condition known as bacterial vaginosis (BV) increases vulnerability to HIV infection and is associated with the absence of H(2)O(2)-producing Lactobacillus. Vaginal lactic acid bacteria (LAB) produce anti-HIV factors such as organic acids and hydrogen peroxide (H(2)O(2)), and may bind and inactivate HIV particles during scavenging of mannose. These factors define potential criteria for initial selection of candidate probiotics to block heterosexual transmission of HIV. Therefore, the primary goal of this study was to characterize acid production on mannose and H(2)O(2) production in vaginal isolates from Canadian adolescents (192 isolates, 16 individuals) and commercial sex workers in Nairobi, Kenya (576 isolates, 96 individuals). Selection of isolates from H(2)O(2)-detecting media suggested an idiosyncratic individual-level profile and extensive phenotypic diversity, including the identification of a subset of "double-strong" acid- and H(2)O(2)-producers with phenotypes similar to well-characterized probiotic strains. Molecular fingerprinting of all isolates by capillary electrophoresis of 16S-23S rRNA interspacer amplicons was coupled with chaperonin-60 universal target (cpn60 UT) sequencing in a subset, tentatively identifying 96% of isolates although only 19% were sequenced. Most isolates belonged to Lactobacillus, Streptococcus, Bifidobacterium or Gardnerella, with a total of 37 species in 15 genera, as well as 5 potentially novel organisms, identified in this study. This sensitivity was likely enhanced by phenotype-based selection on two chromogenic media formulations. Identification of double-strong isolates may provide a rational basis for selection and further characterization of vaginal probiotics, with potential application as part of HIV prevention initiatives in western Canada and East Africa.


Subject(s)
Acids/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Hydrogen Peroxide/metabolism , Phenotype , Vagina/microbiology , Adolescent , Bacteria/classification , Bacteria/genetics , Canada , Female , HIV Infections/microbiology , Humans , Kenya , Probiotics , Risk
20.
Int J Inflam ; 2012: 131243, 2012.
Article in English | MEDLINE | ID: mdl-22506135

ABSTRACT

Immune activation is increasingly recognized as a critical element of HIV infection and pathogenesis, causing expansion of virus founder populations at the mucosal port of entry and eventual exhaustion of cellular immune effectors. HIV susceptibility is well known to be influenced by concurrent sexually transmitted infections; however, the role of commensal vaginal microbiota is poorly characterized. Bacterial vaginosis (BV) is a risk factor for HIV acquisition in studies worldwide; however, the etiology of BV remains enigmatic, and the mechanisms by which BV increases HIV susceptibility are not fully defined. A model of how vaginal microbiota influences HIV transmission is considered in the context of a well-established cohort of HIV-exposed seronegative (HESN) commercial sex workers (CSW) in Nairobi, Kenya, many of whom have increased levels of anti-inflammatory factors in vaginal secretions and reduced peripheral immune activation (immune quiescence). Elucidation of the relationship between complex microbial communities and inflammatory mucosal responses underlying HIV infection should be a priority for future prevention-focussed research.

SELECTION OF CITATIONS
SEARCH DETAIL
...