Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Thromb Haemost ; 20(12): 2797-2809, 2022 12.
Article in English | MEDLINE | ID: mdl-36128768

ABSTRACT

BACKGROUND: Acquired von Willebrand syndrome (aVWS) is common in patients with mechanical circulatory support (MCS) devices. In these patients, the high shear stress in the device leads to increased shear-induced proteolysis of von Willebrand factor (VWF) by A Disintegrin And Metalloprotease with Thrombospondin type 1 repeats, number 13 (ADAMTS13). As a result, the high molecular weight (HMW) VWF multimers are lost, leading to a decreased VWF function and impaired hemostasis that could explain the bleeding complications that are frequently observed in these patients. To counteract this abnormal VWF degradation by ADAMTS13, we developed a novel targeted therapy, using an anti-ADAMTS13 monoclonal antibody (mAb) that inhibits the shear-induced proteolysis of VWF by ADAMTS13. METHODS: Human or bovine blood was circulated through in vitro MCS device systems with either inhibitory anti-ADAMTS13 mAb 3H9 or 17C7 (20 µg/ml) or control anti-ADAMTS13 mAb 5C11 or phosphate buffered saline (PBS). VWF multimers and function (collagen binding activity) were determined at different time points. Next, Impella pumps were implanted in calves and the calves were injected with PBS and subsequently treated with mAb 17C7. VWF, ADAMTS13, and blood parameters were determined. RESULTS: We demonstrated that blocking ADAMTS13 could prevent the loss of HMW VWF multimers in in vitro MCS device systems. Importantly, our antibody could reverse aVWS in a preclinical Impella-induced aVWS calf model. CONCLUSION: Hence, inhibition of ADAMTS13 could become a novel therapeutic strategy to manage aVWS in MCS device patients.


Subject(s)
Heart-Assist Devices , von Willebrand Diseases , Animals , Cattle , Humans , von Willebrand Factor/metabolism , ADAMTS13 Protein , Heart-Assist Devices/adverse effects , Hemostasis , Collagen
2.
Res Pract Thromb Haemost ; 4(5): 918-930, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32685903

ABSTRACT

BACKGROUND: In immune-mediated thrombotic thrombocytopenic purpura (iTTP), patients develop an immune response against the multidomain enzyme ADAMTS13. ADAMTS13 consists of a metalloprotease (M) and disintegrin-like (D) domain, 8 thrombospondin type 1 repeats (T1-T8), a cysteine-rich (C), a spacer (S), and 2 CUB domains (CUB1-2). Previous epitope mapping studies have used relatively large overlapping ADAMTS13 fragments. OBJECTIVES: We aimed at developing small nonoverlapping ADAMTS13 fragments to fine map anti-ADAMTS13 autoantibodies in iTTP patients. METHODS: A library of 16 ADAMTS13 fragments, comprising several small (M, DT, C, S, T2-T5, T6-T8, CUB1, CUB2), and some larger fragments with overlapping domains (MDT, MDTC, DTC, CS, T2-T8, CUB1-2, MDTCS, T2-C2), were generated. All fragments, and ADAMTS13, were expressed as a fusion protein with albumin domain 1, and purified. The folding of the fragments was tested using 17 anti-ADAMTS13 monoclonal antibodies with known epitopes. An epitope mapping assay using small ADAMTS13 fragments was set up, and validated by analyzing 18 iTTP patient samples. RESULTS: Validation with the monoclonal antibodies demonstrated that single S and CUB1 were not correctly folded, and therefore CS and CUB1-2 fragments were selected instead of single C, S, CUB1, and CUB2 fragments. Epitope mapping of antibodies of patients with iTTP confirmed that 6 nonoverlapping ADAMTS13 fragments M, DT, CS, T2-T5, T6-T8, and CUB1-2 were sufficient to accurately determine the antibody-binding sites. CONCLUSION: We have developed a tool to profile patients with iTTP according to their anti-ADAMTS13 antibodies for a better insight in their immune response.

3.
Blood ; 136(3): 353-361, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32356859

ABSTRACT

Recently, we showed that ADAMTS13 circulates in an open conformation during the acute phase of immune-mediated thrombotic thrombocytopenic purpura (iTTP). Although the cause of this conformational change remains elusive, ADAMTS13 is primarily closed in iTTP patients in remission with ADAMTS13 activity >50% and undetectable anti-ADAMTS13 autoantibodies, as well as after rituximab treatment, suggesting a role for anti-ADAMTS13 autoantibodies. Therefore, immunoglobulin G from 18 acute iTTP patients was purified and added to closed ADAMTS13 in healthy donor plasma. This resulted in open ADAMTS13 in 14 of 18 (78%) samples, proving that anti-ADAMTS13 autoantibodies can induce an open ADAMTS13 conformation. To further elucidate the conformation of ADAMTS13 in iTTP patients, we studied a novel iTTP patient cohort (n = 197) that also included plasma samples from iTTP patients in remission in whom ADAMTS13 activity was <50%. The open ADAMTS13 conformation was found during acute iTTP, as well as in patients in remission with ADAMTS13 activity <50% and in half of the patients with ADAMTS13 activity >50%, although free anti-ADAMTS13 autoantibodies were not always detected. Thus, open ADAMTS13 is a hallmark of acute iTTP, as well as a novel biomarker that can be used to detect subclinical iTTP in patients in remission. Finally, a long-term follow-up study in 1 iTTP patient showed that the open conformation precedes a substantial drop in ADAMTS13 activity. In conclusion, we have shown that anti-ADAMTS13 autoantibodies from iTTP patients induce an open ADAMTS13 conformation. Most importantly, an open ADAMTS13 conformation is a biomarker for subclinical iTTP and could become an important tool in TTP management.


Subject(s)
ADAMTS13 Protein/blood , Autoantibodies/blood , Purpura, Thrombocytopenic, Idiopathic/blood , Biomarkers/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Protein Conformation , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Rituximab/administration & dosage
4.
Blood Adv ; 4(6): 1072-1080, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32196558

ABSTRACT

Plasma ADAMTS13 circulates in a folded conformation that is stabilized by an interaction between the central Spacer domain and the C-terminal CUB (complement components C1r and C1s, sea urchin protein Uegf, and bone morphogenetic protein-1) domains. Binding of ADAMTS13 to the VWF D4(-CK) domains or to certain activating murine monoclonal antibodies (mAbs) induces a structural change that extends ADAMTS13 into an open conformation that enhances its function. The objective was to characterize the mechanism by which conformational activation enhances ADAMTS13-mediated proteolysis of VWF. The activating effects of a novel anti-Spacer (3E4) and the anti-CUB1 (17G2) mAbs on the kinetics of proteolysis of VWF A2 domain fragments by ADAMTS13 were analyzed. mAb-induced conformational changes in ADAMTS13 were investigated by enzyme-linked immunosorbent assay. Both mAbs enhanced ADAMTS13 catalytic efficiency (kcat/Km) by ∼twofold (3E4: 2.0-fold; 17G2: 1.8-fold). Contrary to previous hypotheses, ADAMTS13 activation was not mediated through exposure of the Spacer or cysteine-rich domain exosites. Kinetic analyses revealed that mAb-induced conformational extension of ADAMTS13 enhances the proteolytic function of the metalloprotease domain (kcat), rather than augmenting substrate binding (Km). A conformational effect on the metalloprotease domain was further corroborated by the finding that incubation of ADAMTS13 with either mAb exposed a cryptic epitope in the metalloprotease domain that is normally concealed when ADAMTS13 is in a closed conformation. We show for the first time that the primary mechanism of mAb-induced conformational activation of ADAMTS13 is not a consequence of functional exosite exposure. Rather, our data are consistent with an allosteric activation mechanism on the metalloprotease domain that augments active site function.


Subject(s)
Metalloproteases , von Willebrand Factor , ADAMTS13 Protein , Animals , Catalytic Domain , Mice , Protein Binding , Proteolysis , von Willebrand Factor/metabolism
6.
Haematologica ; 104(6): 1268-1276, 2019 06.
Article in English | MEDLINE | ID: mdl-30523052

ABSTRACT

In autoantibody-mediated autoimmune diseases, autoantibody profiling allows patients to be stratified and links autoantibodies with disease severity and outcome. However, in immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients, stratification according to antibody profiles and their clinical relevance has not been fully explored. We aimed to develop a new type of autoantibody profiling assay for iTTP based on the use of anti-idiotypic antibodies. Anti-idiotypic antibodies against 3 anti-spacer autoantibodies were generated in mice and were used to capture the respective anti-spacer idiotopes from 151 acute iTTP plasma samples. We next deciphered these anti-spacer idiotope profiles in iTTP patients and investigated whether these limited idiotope profiles could be linked with disease severity. We developed 3 anti-idiotypic antibodies that recognized particular idiotopes in the anti-spacer autoantibodies II-1, TTP73 or I-9, that are involved in ADAMTS13 binding; 35%, 24% and 42% of patients were positive for antibodies with the II-1, TTP73 and I-9 idiotopes, respectively. Stratifying patients according to the corresponding 8 anti-spacer idiotope profiles provided a new insight into the anti-spacer II-1, TTP73 and I-9 idiotope profiles in these patients. Finally, these limited idiotope profiles showed no association with disease severity. We successfully developed 3 anti-idiotypic antibodies that allowed us to determine the profiles of the anti-spacer II-1, TTP73 and I-9 idiotopes in iTTP patients. Increasing the number of patients and/or future development of additional anti-idiotypic antibodies against other anti-ADAMTS13 autoantibodies might allow idiotope profiles of clinical, prognostic value to be identified.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Autoantibodies/immunology , Disease Susceptibility/immunology , Purpura, Thrombotic Thrombocytopenic/immunology , ADAMTS13 Protein/immunology , ADAMTS13 Protein/metabolism , Animals , Autoantigens/metabolism , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Protein Binding/immunology , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/metabolism , Severity of Illness Index
7.
Thromb Haemost ; 118(10): 1729-1742, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30235483

ABSTRACT

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is characterized by severe ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency, the presence of anti-ADAMTS13 autoantibodies and an open ADAMTS13 conformation with a cryptic epitope in the spacer domain exposed. A detailed knowledge of anti-ADAMTS13 autoantibodies will help identifying pathogenic antibodies and elucidating the cause of ADAMTS13 deficiency. We aimed at cloning anti-ADAMTS13 autoantibodies from iTTP patients to study their epitopes and inhibitory characteristics. We sorted anti-ADAMTS13 autoantibody expressing B cells from peripheral blood mononuclear cells of 13 iTTP patients to isolate anti-ADAMTS13 autoantibody sequences. Ninety-six B cell clones producing anti-ADAMTS13 autoantibodies were identified from which 30 immunoglobulin M (IgM) and 5 IgG sequences were obtained. For this study, we only cloned, expressed and purified the five IgG antibodies. In vitro characterization revealed that three of the five cloned IgG antibodies, TTP73-1, ELH2-1 and TR8C11, indeed recognize ADAMTS13. Epitope mapping showed that antibodies TTP73-1 and TR8C11 bind to the cysteine-spacer domains, while the antibody ELH2-1 recognizes the T2-T3 domains in ADAMTS13. None of the antibodies inhibited ADAMTS13 activity. Given the recent findings regarding the open ADAMTS13 conformation during acute iTTP, we studied if the cloned antibodies could recognize cryptic epitopes in ADAMTS13. Interestingly, all three antibodies recognize cryptic epitopes. In conclusion, we cloned three anti-ADAMTS13 autoantibodies from iTTP patients that recognize cryptic epitopes. Hence, these data nicely fit our recent finding that the conformation of ADAMTS13 is open during acute iTTP.


Subject(s)
ADAMTS13 Protein/immunology , Autoantibodies/blood , Autoantigens/immunology , B-Lymphocytes/immunology , Epitopes, B-Lymphocyte/immunology , Immunoglobulin G/blood , Purpura, Thrombotic Thrombocytopenic/immunology , ADAMTS13 Protein/genetics , Autoantigens/genetics , Cells, Cultured , Clone Cells , Cloning, Molecular , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , Humans , Leukocytes, Mononuclear/immunology , Protein Conformation , RNA, Messenger/genetics
8.
Blood ; 132(20): 2143-2153, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30201758

ABSTRACT

Preemptive rituximab infusions prevent relapses in immune thrombotic thrombocytopenic purpura (iTTP) by maintaining normal ADAMTS13 activity. However, the long-term outcome of these patients and the potential adverse events of this strategy need to be determined. We report the long-term outcome of 92 patients with iTTP in clinical remission who received preemptive rituximab after identification of severe ADAMTS13 deficiency (activity <10%) during the follow-up. Thirty-seven patients had >1 iTTP episode, and the median cumulative relapse incidence before preemptive rituximab was 0.33 episode per year (interquartile range [IQR], 0.23-0.66). After preemptive rituximab, the median cumulative relapse incidence in the whole population decreased to 0 episodes per year (IQR, 0-1.32; P < .001). After preemptive rituximab, ADAMTS13 activity recovery was sustained in 34 patients (37%) during a follow-up of 31.5 months (IQR, 18-65), and severe ADAMTS13 deficiency recurred in 45 patients (49%) after the initial improvement. ADAMTS13 activity usually improved with additional courses of preemptive rituximab. In 13 patients (14%), ADAMTS13 activity remained undetectable after the first rituximab course, but retreatment was efficient in 6 of 10 cases. In total, 14 patients (15%) clinically relapsed, and 19 patients (20.7%) experienced benign adverse effects. Preemptive rituximab treatment was associated with a change in ADAMTS13 conformation in respondent patients. Finally, in the group of 23 historical patients with iTTP and persistently undetectable ADAMTS13 activity, 74% clinically relapsed after a 7-year follow-up (IQR, 5-11). In conclusion, persistently undetectable ADAMTS13 activity in iTTP during remission is associated with a higher relapse rate. Preemptive rituximab reduces clinical relapses by maintaining a detectable ADAMTS13 activity with an advantageous risk-benefit balance.


Subject(s)
Immunologic Factors/therapeutic use , Purpura, Thrombotic Thrombocytopenic/drug therapy , Rituximab/therapeutic use , Secondary Prevention/methods , ADAMTS13 Protein/chemistry , ADAMTS13 Protein/deficiency , ADAMTS13 Protein/metabolism , Adult , Female , Humans , Immunologic Factors/adverse effects , Male , Middle Aged , Prospective Studies , Protein Conformation/drug effects , Purpura, Thrombotic Thrombocytopenic/metabolism , Rituximab/adverse effects , Treatment Outcome
10.
Eur J Haematol ; 2018 May 15.
Article in English | MEDLINE | ID: mdl-29763513

ABSTRACT

INTRODUCTION: Patients suffering from congenital thrombotic thrombocytopenic purpura (cTTP) have a deficiency in ADAMTS13 due to mutations in their ADAMTS13 gene. OBJECTIVE: The aim of this study was to determine ADAMTS13 parameters (activity, antigen, and mutations), to investigate if the propositus suffered from child-onset cTTP, and to study the in vitro effect of the ADAMTS13 mutations. METHODS: ADAMTS13 activity and antigen were determined using the FRETS VWF73 assay and ELISA and ADAMTS13 mutations via sequencing of the exons. Mutant proteins were expressed in Chinese hamster ovary cells, and their expression was studied using fluorescence microscopy and ELISA. Molecular modeling was used to evaluate the effect of the mutations on ADAMTS13 structure and stability. RESULTS: The propositus was diagnosed with cTTP at the age of 20. ADAMTS13 activity was below 10%, and 2 compound heterozygous mutations, the p.R498C point and the p.G259PfsX133 frameshift mutation, were identified. Expression of ADAMTS13 mutants revealed that the p.R498C and the p.G259PfsX133 mutation cause secretion and translation defects in vitro, respectively. Molecular modeling showed that the R498 intra-domain interactions are lacking in the p.R498C mutant, resulting in protein instability. CONCLUSION: The ADAMTS13 mutations result in a severe ADAMTS13 deficiency explaining the patient's phenotype.

11.
TH Open ; 2(1): e8-e15, 2018 Jan.
Article in English | MEDLINE | ID: mdl-31249923

ABSTRACT

In this study, we investigated a case of pregnancy-onset thrombotic thrombocytopenic purpura (TTP). The patient had severely decreased ADAMTS13 ( a d isintegrin a nd m etalloprotease with t hrombo s pondin type 1 motif, member 13) activity levels during acute phase and the presence of inhibitory anti-ADAMTS13 autoantibodies was demonstrated, which led to the diagnosis of immune-mediated TTP. However, ADAMTS13 activity was only mildly restored during remission, although inhibitory anti-ADAMTS13 antibodies were no longer detected. We hypothesized that genetic abnormalities could account for this discrepancy between ADAMTS13 activity and antigen. Genetic analysis revealed the presence of two heterozygous substitutions on the same allele: a single nucleotide polymorphism (SNP) c.2699C > T (p.A900V), located in the beginning of the T5 domain, and a mutation c.3530G > A (p.R1177Q) located in the third linker region of ADAMTS13. In vitro testing of those substitutions by expression of recombinant proteins revealed a normal secretion but a reduced ADAMTS13 activity by the novel p.R1177Q mutation, which could partially explain the subnormal activity levels found during remission. Although changes in the linker region might induce conformational changes in ADAMTS13, the p.R1177Q mutation in the third linker region of ADAMTS13 did not expose a cryptic epitope in the metalloprotease domain. In conclusion, we report on an immune-mediated pregnancy-onset TTP patient who had inhibitory anti-ADAMTS13 autoantibodies during acute phase, but not during remission. Genetic analysis confirmed the diagnosis of immune-mediated TTP and revealed the novel p.R1177Q mutation which mildly impaired ADAMTS13 activity.

12.
Expert Rev Hematol ; 9(2): 209-21, 2016.
Article in English | MEDLINE | ID: mdl-26581428

ABSTRACT

A deficiency in ADAMTS13 (A Disintegrin And Metalloprotease with ThromboSpondin type-1 repeats, member 13) is associated with thrombotic thrombocytopenic purpura (TTP). Congenital TTP is caused by a defect in the ADAMTS13 gene resulting in decreased or absent enzyme activity; acquired TTP results from autoantibodies that either inhibit the activity or increase the clearance of ADAMTS13. Despite major progress in recent years in our understanding of the disease, many aspects around the pathophysiology of TTP are still unclear. Newer studies expanded the TTP field from ADAMTS13 and inhibitory antibodies to immune complexes, cloned autoantibodies, and a possible involvement of other proteases. Additionally, several new treatment strategies supplementing plasma-exchange and infusion are under investigation for a better and more specific treatment of TTP patients. In this review, we discuss the recent insights in TTP pathophysiology and describe upcoming therapeutic opportunities.


Subject(s)
ADAM Proteins/immunology , Autoantibodies/immunology , Purpura, Thrombotic Thrombocytopenic/immunology , ADAM Proteins/chemistry , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAMTS13 Protein , Animals , Antigen-Antibody Complex/blood , Antigen-Antibody Complex/immunology , Autoantibodies/classification , Autoantibodies/genetics , Cloning, Molecular , Combined Modality Therapy , Epitope Mapping , Epitopes/immunology , Humans , Mutation , Protein Binding/drug effects , Purpura, Thrombotic Thrombocytopenic/congenital , Purpura, Thrombotic Thrombocytopenic/therapy , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...