Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Am Water Works Assoc ; 110(4): E2-E18, 2018 Apr.
Article in English | MEDLINE | ID: mdl-36999079

ABSTRACT

De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial watershed model were used to quantify contaminants of emerging concern (CECs) concentrations at DWTP intakes to qualitatively compare exposure risks obtained by the two approaches. Between nine and 71 CECs were detected in grab samples. The number of upstream WWTP discharges ranged from 0 to >1,000; comparative de facto reuse results from DRINCS ranged from <0.1 to 13% during average flow and >80% during lower streamflows. Correlation between chemicals detected and DRINCS modeling results were observed, particularly DWTPs withdrawing from midsize water bodies. This comparison advances the utility of DRINCS to identify locations of DWTPs for future CEC sampling and treatment technology testing.

2.
Environ Sci Technol ; 51(9): 4781-4791, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28401766

ABSTRACT

In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a broad suite of chemical analytes, in streamwater from 35 well-characterized sites (3 reference and 32 impacted) across 24 states and Puerto Rico. ER agonism was the most frequently detected with nearly all sites (34/35) displaying activity (range, 0.054-116 ng E2Eq L-1). There was a strong linear relationship (r2 = 0.917) between in vitro ER activity and concentrations of steroidal estrogens after correcting for the in vitro potency of each compound. AR agonism was detected in 5/35 samples (range, 1.6-4.8 ng DHTEq L-1) but concentrations of androgenic compounds were largely unable to account for the in vitro activity. Similarly, GR agonism was detected in 9/35 samples (range, 6.0-43 ng DexEq L-1); however, none of the recognized GR-active compounds on the target-chemical analyte list were detected. The utility of in vitro assays in water quality monitoring was evident from both the quantitative agreement between ER activity and estrogen concentrations, as well as the detection of AR and GR activity for which there were limited or no corresponding target-chemical detections to explain the bioactivity. Incorporation of in vitro bioassays as complements to chemical analyses in standard water quality monitoring efforts would allow for more complete assessment of the chemical mixtures present in many surface waters.


Subject(s)
Glucocorticoids , Rivers , Biological Assay , Estrogens , Receptors, Estrogen/metabolism , United States , Water Pollutants, Chemical
3.
Sci Total Environ ; 579: 1629-1642, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28040194

ABSTRACT

Mobile and persistent chemicals that are present in urban wastewater, such as pharmaceuticals, may survive on-site or municipal wastewater treatment and post-discharge environmental processes. These pharmaceuticals have the potential to reach surface and groundwaters, essential drinking-water sources. A joint, two-phase U.S. Geological Survey-U.S. Environmental Protection Agency study examined source and treated waters from 25 drinking-water treatment plants from across the United States. Treatment plants that had probable wastewater inputs to their source waters were selected to assess the prevalence of pharmaceuticals in such source waters, and to identify which pharmaceuticals persist through drinking-water treatment. All samples were analyzed for 24 pharmaceuticals in Phase I and for 118 in Phase II. In Phase I, 11 pharmaceuticals were detected in all source-water samples, with a maximum of nine pharmaceuticals detected in any one sample. The median number of pharmaceuticals for all 25 samples was five. Quantifiable pharmaceutical detections were fewer, with a maximum of five pharmaceuticals in any one sample and a median for all samples of two. In Phase II, 47 different pharmaceuticals were detected in all source-water samples, with a maximum of 41 pharmaceuticals detected in any one sample. The median number of pharmaceuticals for all 25 samples was eight. For 37 quantifiable pharmaceuticals in Phase II, median concentrations in source water were below 113ng/L. For both Phase I and Phase II campaigns, substantially fewer pharmaceuticals were detected in treated water samples than in corresponding source-water samples. Seven different pharmaceuticals were detected in all Phase I treated water samples, with a maximum of four detections in any one sample and a median of two pharmaceuticals for all samples. In Phase II a total of 26 different pharmaceuticals were detected in all treated water samples, with a maximum of 20 pharmaceuticals detected in any one sample and a median of 2 pharmaceuticals detected for all 25 samples. Source-water type influences the presence of pharmaceuticals in source and treated water. Treatment processes appear effective in reducing concentrations of most pharmaceuticals. Pharmaceuticals more consistently persisting through treatment include carbamazepine, bupropion, cotinine, metoprolol, and lithium. Pharmaceutical concentrations and compositions from this study provide an important base data set for further sublethal, long-term exposure assessments, and for understanding potential effects of these and other contaminants of emerging concern upon human and ecosystem health.


Subject(s)
Drinking Water/chemistry , Environmental Monitoring , Pharmaceutical Preparations/analysis , Water Pollutants, Chemical/analysis , United States , Water Purification
4.
Sci Total Environ ; 579: 1643-1648, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28040195

ABSTRACT

The source water and treated drinking water from twenty five drinking water treatment plants (DWTPs) across the United States were sampled in 2010-2012. Samples were analyzed for 247 contaminants using 15 chemical and microbiological methods. Most of these contaminants are not regulated currently either in drinking water or in discharges to ambient water by the U. S. Environmental Protection Agency (USEPA) or other U.S. regulatory agencies. This analysis shows that there is little public health concern for most of the contaminants detected in treated water from the 25 DWTPs participating in this study. For vanadium, the calculated Margin of Exposure (MOE) was less than the screening MOE in two DWTPs. For silicon, the calculated MOE was less than the screening MOE in one DWTP. Additional study, for example a national survey may be needed to determine the number of people ingesting vanadium and silicon above a level of concern. In addition, the concentrations of lithium found in treated water from several DWTPs are within the range previous research has suggested to have a human health effect. Additional investigation of this issue is necessary. Finally, new toxicological data suggest that exposure to manganese at levels in public water supplies may present a public health concern which will require a robust assessment of this information.


Subject(s)
Environmental Exposure/statistics & numerical data , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Water Supply/statistics & numerical data , Drinking Water/chemistry , Health Status Indicators , Humans , United States , Water Purification
5.
Sci Total Environ ; 581-582: 909-922, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28024752

ABSTRACT

When chemical or microbial contaminants are assessed for potential effect or possible regulation in ambient and drinking waters, a critical first step is determining if the contaminants occur and if they are at concentrations that may cause human or ecological health concerns. To this end, source and treated drinking water samples from 29 drinking water treatment plants (DWTPs) were analyzed as part of a two-phase study to determine whether chemical and microbial constituents, many of which are considered contaminants of emerging concern, were detectable in the waters. Of the 84 chemicals monitored in the 9 Phase I DWTPs, 27 were detected at least once in the source water, and 21 were detected at least once in treated drinking water. In Phase II, which was a broader and more comprehensive assessment, 247 chemical and microbial analytes were measured in 25 DWTPs, with 148 detected at least once in the source water, and 121 detected at least once in the treated drinking water. The frequency of detection was often related to the analyte's contaminant class, as pharmaceuticals and anthropogenic waste indicators tended to be infrequently detected and more easily removed during treatment, while per and polyfluoroalkyl substances and inorganic constituents were both more frequently detected and, overall, more resistant to treatment. The data collected as part of this project will be used to help inform evaluation of unregulated contaminants in surface water, groundwater, and drinking water.


Subject(s)
Drinking Water/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water Purification , Groundwater/analysis , United States
6.
J Toxicol Environ Health A ; 72(7): 461-7, 2009.
Article in English | MEDLINE | ID: mdl-19267307

ABSTRACT

Adverse health effects that may result from chronic exposure to mixtures of disinfection by-products (DBPs) present in drinking waters may be linked to both the types and concentrations of DBPs present. Depending on the characteristics of the source water and treatment processes used, both types and concentrations of DBPs found in drinking waters vary substantially. The composition of a drinking-water mixture also may change during distribution. This study evaluated the relationships between mutagenicity, using the Ames assay, and water quality parameters. The study included information on treatment, mutagenicity data, and water quality data for source waters, finished waters, and distribution samples collected from five full-scale drinking water treatment plants, which used chlorine exclusively for disinfection. Four of the plants used surface water sources and the fifth plant used groundwater. Correlations between mutagenicity and water quality parameters are presented. The highest correlation was observed between mutagenicity and the total organic halide concentrations in the treated samples.


Subject(s)
Chlorine/toxicity , Disinfectants/toxicity , Disinfection , Mutagens/toxicity , Water Supply/standards , Animals , Chlorine/analysis , Disinfectants/analysis , Filtration , Halogenation , In Vitro Techniques , Male , Mutagenicity Tests , Organic Chemicals/toxicity , Rats , Rats, Sprague-Dawley , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Water Supply/analysis
7.
J Toxicol Environ Health A ; 72(7): 468-81, 2009.
Article in English | MEDLINE | ID: mdl-19267308

ABSTRACT

For evaluation of the adverse health effects associated with exposures to complex chemical mixtures in the environment, the U.S. Environmental Protection Agency (EPA) (2000) states, "if no data are available on the mixture of concern, but health effects data are available on a similar mixture ... a decision must be made whether the mixture on which health effects are available is 'sufficiently' similar to the mixture of concern to permit a risk assessment." This article provides a detailed discussion of statistical considerations for evaluation of the similarity of mixtures. Multivariate statistical procedures are suggested to determine whether individual samples of drinking-water disinfection by-products (DBPs) vary significantly from a group of samples that are considered to be similar. The application of principal components analysis to (1) reduce the dimensionality of the vectors of water samples and (2) permit visualization and statistical comparisons in lower dimensional space is suggested. Formal analysis of variance tests of homogeneity are illustrated. These multivariate statistical procedures are applied to a data set describing samples from multiple water treatment plants. Essential data required for carrying out sensitive analyses include (1) identification and measurement of toxicologically sensitive process input and output characteristics, and (2) estimates of variability within the data to construct statistically efficient estimates and tests.


Subject(s)
Complex Mixtures/analysis , Complex Mixtures/toxicity , Data Interpretation, Statistical , Disinfectants/analysis , Disinfectants/toxicity , Water Supply/analysis , Algorithms , Analysis of Variance , Animals , Disinfection , Humans , Matched-Pair Analysis , Principal Component Analysis , Risk Assessment
8.
J Toxicol Environ Health A ; 71(17): 1125-32, 2008.
Article in English | MEDLINE | ID: mdl-18636387

ABSTRACT

Chemical disinfection of drinking water is a major public health triumph of the 20th century, resulting in significant decreases in morbidity and mortality from waterborne diseases. Disinfection by-products (DBP) are chemicals formed by the reaction of oxidizing disinfectants with inorganic and organic materials in the source water. To address potential health concerns that cannot be answered directly by toxicological research on individual DBPs or defined DBP mixtures, scientists residing within the various organizations of the U.S. Environmental Protection Agency's Office of Research and Development (the National Health and Environmental Effects Research Laboratory, the National Risk Management Research Laboratory, the National Exposure Research Laboratory, and the National Center for Environmental Assessment) engaged in joint investigation of environmentally realistic complex mixtures of DBP. Research on complex mixtures of DBP is motivated by three factors: (a) DBP exposure is ubiquitous to all segments of the population; (b) some positive epidemiologic studies are suggestive of potential developmental, reproductive, or carcinogenic health effects in humans exposed to DBP; and (c) significant amounts of the material that makes up the total organic halide portion of the DBP have not been identified. The goal of the Integrated Disinfection Byproducts Mixtures Research Project (the 4Lab Study) is provision of sound, defensible, experimental data on environmentally relevant mixtures of DBP and an improved estimation of the potential health risks associated with exposure to the mixtures of DBP formed during disinfection of drinking water. A phased research plan was developed and implemented. The present series of articles provides the results from the first series of experiments.


Subject(s)
Disinfectants/chemistry , Public Health , Research Design , Water Purification/methods , Water Supply , Animals , Disinfectants/analysis , Disinfectants/toxicity , Humans , Interprofessional Relations , United States , United States Environmental Protection Agency
9.
J Toxicol Environ Health A ; 71(17): 1165-86, 2008.
Article in English | MEDLINE | ID: mdl-18636390

ABSTRACT

This article describes the disinfection by-product (DBP) characterization portion of a series of experiments designed for comprehensive chemical and toxicological evaluation of two drinking-water concentrates containing highly complex mixtures of DBPs. This project, called the Four Lab Study, involved the participation of scientists from four laboratories and centers of the U.S. Environmental Protection Agency (EPA) Office of Research and Development, along with collaborators from the water industry and academia, and addressed toxicologic effects of complex DBP mixtures, with an emphasis on reproductive and developmental effects that are associated with DBP exposures in epidemiologic studies. Complex mixtures of DBPs from two different disinfection schemes (chlorination and ozonation/postchlorination) were concentrated successfully, while maintaining a water matrix suitable for animal studies. An array of chlorinated/brominated/iodinated DBPs was created. The DBPs were relatively stable over the course of the animal experiments, and a significant portion of the halogenated DBPs formed in the drinking water was accounted for through a comprehensive qualitative and quantitative identification approach. DBPs quantified included priority DBPs that are not regulated but have been predicted to produce adverse health effects, as well as those currently regulated in the United States and those targeted during implementation of the Information Collection Rule. New by-products were also reported for the first time. These included previously undetected and unreported bromo- and chloroacids, iodinated compounds, bromo- and iodophenols, and bromoalkyltins.


Subject(s)
Disinfectants/analysis , Halogenation , Hydrocarbons, Brominated/analysis , Hydrocarbons, Chlorinated/analysis , Water Purification/methods , Water Supply/standards , Animals , Disinfectants/chemistry , Disinfectants/toxicity , Humans , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Chlorinated/chemistry , United States , United States Environmental Protection Agency , Water Supply/analysis
10.
J Toxicol Environ Health A ; 71(17): 1187-94, 2008.
Article in English | MEDLINE | ID: mdl-18636391

ABSTRACT

Although chemical disinfection of drinking water is a highly protective public health practice, the disinfection process is known to produce toxic contaminants. Epidemiological studies associate chlorinated drinking water with quantitatively increased risks of rectal, kidney, and bladder cancer. One study found a significant exposure-response association between water mutagenicity and relative risk for bladder and kidney cancer. A number of studies found that several types of disinfection processes increase the level of mutagens detected by the Salmonella assay. As part of a comprehensive study to examine chlorinated and ozonated/postchlorinated drinking water for toxicological contaminants, the Salmonella mutagenicity assay was used to screen both volatile and nonvolatile organic components. The assay also compared the use of reverse osmosis and XAD resin procedures for concentrating the nonvolatile components. Companion papers provide the results from other toxicological assays and chemical analysis of the drinking water samples. The volatile components of the ozonated/postchlorinated and chlorinated water samples and a trihalomethane mixture were mutagenic to a Salmonella tester strain transfected with a rat theta-class glutathione S-transferase and predominantly nonmutagenic in the control strain. In this study, the nonvolatile XAD concentrate of the untreated water possessed a low level of mutagenic activity. However, compared to the levels of mutagenicity in the finished water XAD concentrates, the contribution from the settled source water was minimal. The mutagenicity seen in the reverse osmosis concentrates was < 50% of that seen in the XAD concentrates. Overall, mutagenic responses were similar to those observed in other North American studies and provide evidence that the pilot plant produced disinfection by-products similar to that seen in other studies.


Subject(s)
Disinfectants/toxicity , Halogenation , Mutagenicity Tests/methods , Ozone/chemistry , Water Microbiology , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Purification/methods , Water Supply/analysis , Animals , Humans , Salmonella typhimurium/drug effects , United States , United States Environmental Protection Agency
11.
J Toxicol Environ Health A ; 71(17): 1222-34, 2008.
Article in English | MEDLINE | ID: mdl-18636394

ABSTRACT

This article presents a toxicologically-based risk assessment strategy for identifying the individual components or fractions of a complex mixture that are associated with its toxicity. The strategy relies on conventional component-based mixtures risk approaches such as dose addition, response addition, and analyses of interactions. Developmental toxicity data from two drinking-water concentrates containing disinfection by-products (DBP) mixtures were used to illustrate the strategy. The results of this study showed that future studies of DBP concentrates using the Chernoff-Kavlock bioassay need to consider evaluating DBP that are concentrated more than 130-fold and using a rat strain that is more sensitive to chemically-induced pregnancy loss than Sprague-Dawley rats. The results support the planned experimental design of a multigeneration reproductive and developmental study of DBP concentrates. Finally, this article discusses the need for a systematic evaluation of DBP concentrates obtained from multiple source waters and treatment types. The development of such a database could be useful in evaluating whether a specific DBP concentrate is sufficiently similar to tested combinations of source waters and treatment alternatives so that health risks for the former may be estimated using data on the latter.


Subject(s)
Disinfectants/toxicity , Fetal Development/drug effects , Water Pollutants, Chemical/toxicity , Water Purification/methods , Animals , Female , Humans , No-Observed-Adverse-Effect Level , Pregnancy , Risk Assessment/methods , Water Pollutants, Chemical/analysis
12.
Environ Health Perspect ; 110 Suppl 6: 1013-24, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12634133

ABSTRACT

Chemical disinfection of water is a major public health triumph of the 20th century. Dramatic decreases in both morbidity and mortality of waterborne diseases are a direct result of water disinfection. With these important public health benefits comes low-level, chronic exposure to a very large number of disinfection byproducts (DBPs), chemicals formed through reaction of the chemical disinfectant with naturally occurring inorganic and organic material in the source water. This article provides an overview of joint research planning by scientists residing within the various organizations of the U.S. Environmental Protection Agency Office of Research and Development. The purpose is to address concerns related to potential health effects from exposure to DBPs that cannot be addressed directly from toxicological studies of individual DBPs or simple DBP mixtures. Two factors motivate the need for such an investigation of complex mixtures of DBPs: a) a significant amount of the material that makes up the total organic halide and total organic carbon portions of the DBPs has not been identified; and b) epidemiologic data, although not conclusive, are suggestive of potential developmental, reproductive, or carcinogenic health effects in humans exposed to DBPs. The plan is being developed and the experiments necessary to determine the feasibility of its implementation are being conducted by scientists from the National Health and Environmental Effects Research Laboratory, the National Risk Management Research Laboratory, the National Exposure Research Laboratory, and the National Center for Environmental Assessment.


Subject(s)
Chlorine Compounds/adverse effects , Chlorine Compounds/analysis , Disinfectants/adverse effects , Disinfectants/analysis , Public Health , Water Purification , Water Supply , Chemistry Techniques, Analytical/methods , Drug Interactions , Humans , Interprofessional Relations , Osmosis , Program Development , Research Design , Risk Assessment , Toxicology/trends , United States , United States Environmental Protection Agency
SELECTION OF CITATIONS
SEARCH DETAIL
...