Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5715, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588454

ABSTRACT

Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Protein Precursors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Fractionation , Cell Nucleus/metabolism , Cross-Linking Reagents/chemistry , Mass Spectrometry/methods , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/isolation & purification , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/isolation & purification , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Molecular Docking Simulation , Mutagenesis, Site-Directed , Point Mutation , Protein Binding/genetics , Protein Interaction Mapping/methods , Protein Precursors/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification
2.
Nat Commun ; 9(1): 4028, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279421

ABSTRACT

The presequence translocase of the mitochondrial inner membrane (TIM23 complex) facilitates anterograde precursor transport into the matrix and lateral release of precursors with stop-transfer signal into the membrane (sorting). Sorting requires precursor exit from the translocation channel into the lipid phase through the lateral gate of the TIM23 complex. How the two transport modes are regulated and balanced against each other is unknown. Here we show that the import motor J-protein Pam18, which is essential for matrix import, controls lateral protein release into the lipid bilayer. Constitutively translocase-associated Pam18 obstructs lateral precursor transport. Concomitantly, Mgr2, implicated in precursor quality control, is displaced from the translocase. We conclude that during motor-dependent matrix protein transport, the transmembrane segment of Pam18 closes the lateral gate to promote anterograde polypeptide movement. This finding explains why a motor-free form of the translocase facilitates the lateral movement of precursors with a stop-transfer signal.


Subject(s)
Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Yeasts
3.
Elife ; 62017 08 31.
Article in English | MEDLINE | ID: mdl-28857742

ABSTRACT

Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Proteolipids/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Binding Sites , Biological Transport/physiology , Cardiolipins/chemistry , Cardiolipins/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Membrane Potential, Mitochondrial/physiology , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Mitochondria/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mutation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Proteolipids/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity
4.
J Cell Biol ; 216(1): 83-92, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-28011846

ABSTRACT

Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor's hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate-driven import motor activity.


Subject(s)
Membrane Potential, Mitochondrial , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Protein Precursors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Genotype , Hydrolysis , Membrane Proteins/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Precursor Protein Import Complex Proteins , Mutation , Phenotype , Protein Precursors/genetics , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Time Factors
5.
Cell ; 167(2): 471-483.e10, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27693358

ABSTRACT

Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits.


Subject(s)
Cyclooxygenase 1/metabolism , Electron Transport Complex IV/metabolism , Membrane Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Active Transport, Cell Nucleus , Cell Line, Tumor , Cyclooxygenase 1/biosynthesis , Cyclooxygenase 1/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/biosynthesis , Electron Transport Complex IV/genetics , HEK293 Cells , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Oxidative Phosphorylation , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Mitochondrial , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...