Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(11): e112651, 2014.
Article in English | MEDLINE | ID: mdl-25386661

ABSTRACT

Maternal obesity affects the incidence of cardiovascular disease and diabetes in offspring. Also the use of assisted reproductive technologies (ART) has been associated with cardiovascular deficiencies in offspring. Obese women often suffer from infertility and use ART to achieve a pregnancy, but the combined effects of maternal obesity and ART on cardiovascular health and incidence of diabetes in the offspring is not known. Here, we report the effects of the use of ART within an obesogenic environment, consisting of feeding a western diet (WD) to dams and offspring, on resistance artery function and presence of diabetes biomarkers in juvenile mice offspring. Our results indicate that WD and ART interacted to induce endothelial dysfunction in mesenteric resistance arteries isolated from 7-week-old mice offspring. This was determined by presence of a reduced acetylcholine-induced dilation compared to controls. The arteries from these WD-ART mice also had greater wall cross-sectional areas and wall to lumen ratios indicative of vascular hypertrophic remodeling. Of the diabetes biomarkers measured, only resistin was affected by a WD×ART interaction. Serum resistin was significantly greater in WD-ART offspring compared to controls. Diet and sex effects were observed in other diabetes biomarkers. Our conclusion is that in mice the use of ART within an obesogenic environment interacts to favor the development of endothelial dysfunction in the resistance arteries of juvenile offspring, while having marginal effects on diabetes biomarkers.


Subject(s)
Biomarkers/blood , Diabetes Mellitus, Type 2/metabolism , Mesenteric Arteries/physiology , Reproductive Techniques, Assisted/adverse effects , Acetylcholine/pharmacology , Animals , Diabetes Mellitus, Type 2/physiopathology , Diet, Western/adverse effects , Female , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiopathology , Mice, Inbred Strains , Obesity/complications , Phenylephrine/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Vasoconstriction/drug effects , Vasodilation/drug effects
2.
Reproduction ; 147(1): 111-23, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24163396

ABSTRACT

Maternal obesity and the use of assisted reproductive technologies (ART) are two suboptimal developmental environments that can lead to offspring obesity and cardiovascular disease. We hypothesized that these environments independently and synergistically adversely affect the offspring's weight and cardiovascular performance at ~7 weeks of age. Mice were fed either 24% fat and 17.5% high-fructose (HF) corn syrup or maintenance chow (5% fat; low-fat, no-fructose (LF)). Dams were subdivided into no ART and ART groups. ART embryos were cultured in Whitten's medium and transferred into pseudopregnant recipients consuming the same diet as the donor. Offspring were fed the same diet as the mother. Body weights (BW) were measured weekly and mean arterial pressure (MAP) was collected through carotid artery catheterization at killing (55±0.5 days old). Expression of genes involved in cardiovascular remodeling was measured in thoracic aorta using qRT-PCR, and levels of reactive oxygen species (ROS) were measured intracellularly and extracellularly in mesenteric resistance arteries. ART resulted in increased BW at weaning. This effect decreased over time and diet was the predominant determinant of BW by killing. Males had greater MAP than females (P=0.002) and HF consumption was associated with greater MAP regardless of sex (P<0.05). Gene expression was affected by sex (P<0.05) and diet (P<0.1). Lastly, the use of ART resulted in offspring with increased intracellular ROS (P=0.05). In summary, exposure to an obesogenic diet pre- and/or post-natally affects weight, MAP, and gene expression while ART increases oxidative stress in mesenteric resistance arteries of juvenile offspring, no synergistic effects were observed.


Subject(s)
Arterial Pressure/physiology , Body Weight/physiology , Diet, High-Fat , Maternal Nutritional Physiological Phenomena/physiology , Prenatal Exposure Delayed Effects/physiopathology , Reproductive Techniques, Assisted , Animals , Female , Male , Mice , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...