Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; 34(47): e2206237, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36210741

ABSTRACT

Piezoresponse force microscopy (PFM) is widely used for characterization and exploration of the nanoscale properties of ferroelectrics. However, quantification of the PFM signal is challenging due to the convolution of various extrinsic and intrinsic contributions. Although quantification of the PFM amplitude signal has received considerable attention, quantification of the PFM phase signal has not been addressed. A properly calibrated PFM phase signal can provide valuable information on the sign of the local piezoelectric coefficient-an important and nontrivial issue for emerging ferroelectrics. In this work, two complementary methodologies to calibrate the PFM phase signal are discussed. The first approach is based on using a standard reference sample with well-known independently measured piezoelectric coefficients, while the second approach exploits the electrostatic sample-cantilever interactions to determine the parasitic phase offset. Application of these methodologies to studies of the piezoelectric behavior in ferroelectric HfO2 -based thin-film capacitors reveals intriguing variations in the sign of the longitudinal piezoelectric coefficient, d33,eff . It is shown that the piezoelectric properties of the HfO2 -based capacitors are inherently sensitive to their thickness, electrodes, as well as deposition methods, and can exhibit wide variations including a d33,eff sign change within a single device.

2.
ACS Appl Mater Interfaces ; 11(38): 35115-35121, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31460741

ABSTRACT

Ferroelectric (FE) HfO2-based thin films, which are considered as one of the most promising material systems for memory device applications, exhibit an adverse tendency for strong imprint. Manifestation of imprint is a shift of the polarization-voltage (P-V) loops along the voltage axis due to the development of an internal electric bias, which can lead to the failure of the writing and retention functions. Here, to gain insight into the mechanism of the imprint effect in La-doped HfO2 (La:HfO2) capacitors, we combine the pulse switching technique with high-resolution domain imaging by means of piezoresponse force microscopy. This approach allows us to establish a correlation between the macroscopic switching characteristics and domain time-voltage-dependent behavior. It has been shown that the La:HfO2 capacitors exhibit a much more pronounced imprint compared to Pb(Zr,Ti)O3-based FE capacitors. Also, in addition to conventional imprint, which evolves with time in the poled capacitors, an easily changeable imprint, termed as "fluid imprint", with a strong dependence on the switching prehistory and measurement conditions, has been observed. Visualization of the domain structure reveals a specific signature of fluid imprint-continuous switching of polarization in the same direction as the previously applied field that continues a long time after the field was turned off. This effect, termed as "inertial switching", is attributed to charge injection and subsequent trapping at defect sites at the film-electrode interface.

3.
ACS Appl Mater Interfaces ; 10(36): 30514-30521, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30105905

ABSTRACT

The new class of fully silicon-compatible hafnia-based ferroelectrics with high switchable polarization and good endurance and thickness scalability shows a strong promise for new generations of logic and memory devices. Among other factors, their competitiveness depends on the power efficiency that requires reliable low-voltage operation. Here, we show genuine ferroelectric switching in Hf xZr(1- x)O2 (HZO) layers in the application-relevant capacitor geometry, for driving signals as low as 800 mV and coercive voltage below 500 mV. Enhanced piezoresponse force microscopy with sub-picometer sensitivity allowed for probing individual polarization domains under the top electrode and performing a detailed analysis of hysteretic switching. The authentic local piezoelectric loops and domain wall movement under bias attest to the true ferroelectric nature of the detected nanodomains. The systematic analysis of local piezoresponse loop arrays reveals a totally unexpected thickness dependence of the coercive fields in HZO capacitors. The thickness decrease from 10 to 7 nm is associated with a remarkably strong decrease of the coercive field, with about 50% of the capacitor area switched at coercive voltages ≤0.5 V. Our explanation consistent with the experimental data involves a change of mechanism of nuclei-assisted switching when the thickness decreases below 10 nm. The practical implication of this effect is a robust ferroelectric switching under the millivolt-range driving signal, which is not expected for the standard coercive voltage scaling law. These results demonstrate a strong potential for further aggressive thickness reduction of HZO layers for low-power electronics.

4.
Inorg Chem ; 57(5): 2752-2765, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29446630

ABSTRACT

Recently simulation groups have reported the lanthanide series elements as the dopants that have the strongest effect on the stabilization of the ferroelectric non-centrosymmetric orthorhombic phase in hafnium oxide. This finding confirms experimental results for lanthanum and gadolinium showing the highest remanent polarization values of all hafnia-based ferroelectric films until now. However, no comprehensive overview that links structural properties to the electrical performance of the films in detail is available for lanthanide-doped hafnia. La:HfO2 appears to be a material with a broad window of process parameters, and accordingly, by optimization of the La content in the layer, it is possible to improve the performance of the material significantly. Variations of the La concentration leads to changes in the crystallographic structure in the bulk of the films and at the interfaces to the electrode materials, which impacts the spontaneous polarization, internal bias fields, and with this the field cycling behavior of the capacitor structure. Characterization results are compared to other dopants like Si, Al, and Gd to validate the advantages of the material in applications such as semiconductor memory devices.

5.
Nanoscale ; 9(28): 9973-9986, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28681890

ABSTRACT

The unexpected ferroelectric properties of nanoscale hafnia-zirconia are considered to be promising for a wealth of applications including ferroelectric memory, field effect transistors, and energy-related applications. However, the reason why the unexpected ferroelectric Pca21 phase can be stabilized has not been clearly understood although numerous extensive theoretical and experimental results have been reported recently. The ferroelectric orthorhombic phase is not a stable phase under processing conditions from the viewpoint of bulk free energy. Although the possibility of stabilization of the ferroelectric phase due to the surface energy effect has been theoretically suggested, such a theoretical model has not been systematically compared with actual experimental results. In this study, the experimental observations on polymorphism in nanoscale HfO2-ZrO2 solid solution thin films of a wide range of film compositions and thicknesses are comprehensively related to the theoretical predictions based on a thermodynamic surface energy model. The theoretical model can semi-quantitatively explain the experimental results on the phase-evolution, but there were non-negligible discrepancies between the two results. To understand these discrepancies, various factors such as the film stress, the role of a TiN capping layer, and the kinetics of crystallization are systematically studied. This work also reports on the evolution of electrical properties of the film, i.e. dielectric, ferroelectric, anti-ferroelectric, and morphotropic phase changes, as a function of the film composition and thickness. The in-depth analyses of the phase change are expected to provide an important guideline for subsequent studies.

6.
ACS Appl Mater Interfaces ; 7(36): 20224-33, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26308500

ABSTRACT

For the rather new hafnia- and zirconia-based ferroelectrics, a lot of questions are still unsettled. Among them is the electric field cycling behavior consisting of (1) wake-up, (2) fatigue, and (3) the recently discovered subcycling-induced split-up/merging effect of transient current peaks in a hysteresis measurement. In the present work, first-order reversal curves (FORCs) are applied to study the evolution of the switching and backswitching field distribution within the frame of the Preisach model for three different phenomena: (1) The pristine film contains two oppositely biased regions. These internal bias fields vanish during the wake-up cycling. (2) Fatigue as a decrease in the number of switchable domains is accompanied by a slight increase in the mean absolute value of the switching field. (3) The split-up effect is shown to also be related to local bias fields in a complex situation resulting from both the field cycling treatment and the measurement procedure. Moreover, the role of the wake-up phenomenon is discussed with respect to optimizing low-voltage operation conditions of ferroelectric memories toward reasonably high and stable remanent polarization and highest possible endurance.

7.
Article in English | MEDLINE | ID: mdl-25768825

ABSTRACT

The approach of dynamic leakage current compensation (DLCC) for leaky ferroelectrics is revisited. Meyer et al. introduced a calculus based on the transient currents recorded during a dynamic hysteresis measurement. Here, a complementary calculus based on polarization data is presented which eases data processing. The effect of the DLCC is exemplified and some practical limitations are given beyond what was presented in 2005.

8.
ACS Appl Mater Interfaces ; 6(22): 19744-51, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25365475

ABSTRACT

HfO2 based ferroelectrics are lead-free, simple binary oxides with nonperovskite structure and low permittivity. They just recently started attracting attention of theoretical groups in the fields of ferroelectric memories and electrostatic supercapacitors. A modified approach of harmonic analysis is introduced for temperature-dependent studies of the field cycling behavior and the underlying defect mechanisms. Activation energies for wake-up and fatigue are extracted. Notably, all values are about 100 meV, which is 1 order of magnitude lower than for conventional ferroelectrics like lead zirconate titanate (PZT). This difference is mainly atttributed to the one to two orders of magnitude higher electric fields used for cycling and to the different surface to volume ratios between the 10 nm thin films in this study and the bulk samples of former measurements or simulations. Moreover, a new, analog-like split-up effect of switching peaks by field cycling is discovered and is explained by a network model based on memcapacitive behavior as a result of defect redistribution.

9.
Adv Mater ; 26(48): 8198-202, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25352107

ABSTRACT

Static domain structures and polarization dynamics of silicon doped HfO2 are explored. The evolution of ferroelectricity as a function of Si-doping level driving the transition from paraelectricity via ferroelectricity to antiferroelectricity is investigated. Ferroelectric and antiferroelectric properties can be observed locally on the pristine, poled and electroded surfaces, providing conclusive evidence to intrinsic ferroic behavior.

10.
Nanotechnology ; 24(45): 455301, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24141145

ABSTRACT

The non-uniform intensity profile of Gaussian-like laser beams used in interference lithography (IL) leads to a non-uniform dose and feature size distribution across the sample. Previously described methods to improve dose uniformity are reviewed. However, here we examine the behavior of the non-uniformity from the viewpoint of photoresist response rather than the IL system configuration. Samples with a fixed intra-sample dose profile were exposed with an increasing average dose. A line/space pattern with a period of 240 nm across an area of 2 × 2 cm(2) was produced using IL on identical samples using a HeCd laser operated at 325 nm and a Lloyd's mirror IL system. A binary model of photoresist response predicts that the absolute range of line widths in nanometers should be significantly reduced as the overall sample dose is increased. We have experimentally verified a reduction in the range of line widths within a given sample from 50 to 16 nm as the overall dose is increased by only 60%. This resulted in a drop in the narrowest line width from 120 to 65 nm. An etch process is demonstrated to increase the line width by generating a wider secondary chrome hard mask from the narrowly patterned primary chrome hard mask. The subsequent fabrication of a silicon nanoimprint mold is used as a demonstration of the technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...