Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Med ; 12(12): e1146, 2022 12.
Article in English | MEDLINE | ID: mdl-36536477

ABSTRACT

Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.


Subject(s)
Cell Cycle Proteins , Drug Resistance, Neoplasm , Glycerophospholipids , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Animals , Mice , Disease Progression , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Genes, Switch , Glycerophospholipids/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/therapeutic use , Humans , Cell Cycle Proteins/genetics
2.
Microbes Infect ; 22(8): 360-365, 2020 09.
Article in English | MEDLINE | ID: mdl-32084556

ABSTRACT

Our laboratory has investigated the role of an evolutionarily conserved RNA species called microRNAs (miRs) in regulation of anti-chlamydial protective immunity. MiRs including miR-155 expressed in specific immune effector cells are critical for antigen specific protective immunity and IFN-γ production. Using miR-155 deficient mice, and a murine pulmonary model for chlamydial infection, we report here 1) the effect of host miR-155 on bacterial burden, and 2) identify probable immune genes regulated by miR-155.


Subject(s)
Chlamydia Infections/microbiology , Chlamydia muridarum/physiology , Lung/immunology , MicroRNAs/immunology , Animals , Bacterial Load , Chlamydia Infections/genetics , Chlamydia Infections/immunology , Disease Models, Animal , Disease Progression , Gene Expression Regulation/immunology , Interferon-gamma/metabolism , Lung/microbiology , Mice , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...