Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Int J Nanomedicine, v. 2021, n. 16, p. 7153—7168, out. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3986

ABSTRACT

Purpose: The use of adjuvants can significantly strengthen a vaccine’s efficacy. We sought to explore the immunization efficacy of bacterial outer membrane vesicles (OMVs) displaying the Schistosoma mansoni antigen, SmTSP-2, through a biotin-rhizavidin coupling approach. The rationale is to exploit the nanoparticulate structure and the adjuvant properties of OMVs to induce a robust antigen-specific immune response, in light of developing new vaccines against S. mansoni. Materials and Methods: OMVs were obtained from Neisseria lactamica and conjugated with biotin. The recombinant SmTSP-2 in fusion with the biotin-binding protein rhizavidin (rRzvSmTSP-2) was produced in E. coli and coupled to biotinylated OMVs to generate an OMV complex displaying SmTSP-2 on the membrane surface (OMV:rSmTSP-2). Transmission electron microscopy (TEM) and dynamic light scattering analysis were used to determine particle charge and size. The immunogenicity of the vaccine complex was evaluated in C57BL/6 mice. Results: The rRzvSmTSP-2 protein was successfully coupled to biotinylated OMVs and purified by size-exclusion chromatography. The OMV:rSmTSP-2 nanoparticles showed an average size of 200 nm, with zeta potential around – 28 mV. Mouse Bone Marrow Dendritic Cells were activated by the nanoparticles as determined by increased expression of the co-stimulatory molecules CD40 and CD86, and the proinflammatory cytokines (TNF-α, IL-6 and IL-12) or IL-10. Splenocytes of mice immunized with OMV:rSmTSP-2 nanoparticles reacted to an in vitro challenge with SmTSP-2 with an increased production of IL-6, IL-10 and IL-17 and displayed a higher number of CD4+ and CD8+ T lymphocytes expressing IFN-γ, IL-4 and IL-2, compared to mice immunized with the antigen alone. Immunization of mice with OMV:rSmTSP-2 induced a 100-fold increase in specific anti-SmTSP-2 IgG antibody titers, as compared to the group receiving the recombinant rSmTSP-2 protein alone or even co-administered with unconjugated OMV. Conclusion: Our results demonstrate that the SmTSP-2 antigen coupled with OMVs is highly immunogenic in mice, supporting the potential effectiveness of this platform for improved antigen delivery in novel vaccine strategies.

2.
Vaccine ; 30(42): 6064-9, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22867717

ABSTRACT

Serogroup B outer membrane vesicles (OMV) with iron regulated proteins (IRP) from Neisseria meningitidis constitute the antigen for the vaccine against the disease caused by this bacterium. Aiming to enhance final OMV concentration, seven batch experiments were carried out under four different conditions: (i) with original Catlin medium; (ii) with original Catlin medium and lactate and amino acids pulse at the 6th cultivation hour; (iii) with Catlin medium with double initial concentrations of lactate and amino acids and (iv) Catlin medium without glycerol and with double initial concentrations of lactate and amino acids. The cultivation experiments were carried out in a 7-L bioreactor under the following conditions: 36°C, 0.5atm, overlay air 1L/min, agitation: 250-850 rpm, and O(2) control at 10%, 20 h. After lactate and amino acids exhaustion, cell growth reached stationary phase and a significant release increase of OMV was observed. According to the Luedeking & Piret model, OMV liberation is non-growth associated. Glycerol was not consumed during cultivation. The maximum OMV concentration value attained was 162 mg/L with correspondent productivity of 8.1mg/(Lh) employing Catlin medium with double initial concentrations of lactate and amino acids. The obtained OMV satisfied constitution and protein pattern criteria and were suitable for vaccine production.


Subject(s)
Bacterial Outer Membrane Proteins/biosynthesis , Bioreactors , Neisseria meningitidis, Serogroup B/metabolism , Secretory Vesicles/chemistry , Amino Acids/chemistry , Batch Cell Culture Techniques , Culture Media/chemistry , Glycerol/metabolism , Iron-Regulatory Proteins/chemistry , Lactic Acid/chemistry , Meningococcal Vaccines/biosynthesis
3.
Braz. j. microbiol ; 37(4): 488-493, Oct.-Dec. 2006. tab, graf
Article in English | LILACS, Sec. Est. Saúde SP | ID: lil-442199

ABSTRACT

Meningococcal disease is an important cause of death and morbidity throughout the world. Nearly 330,000 cases and 35,000 deaths occur yearly. Neisseria meningitidis, serogroup B strain N.44/89, is prevalent in Brazil. Its outer membrane vesicles (OMV) with iron regulated proteins (IRP) are released to the culture medium and are used as antigen for vaccine production. In order to have knowledge about the kinetic parameters, especially the final OMV concentration values, 20-h batch cultivations were carried out in Catlin medium with iron restriction. Process conditions comprised: 7 L bioreactor, 36°C, 0.5 atm, overlay air flowrate of 1 L/min, agitation varying from 250 rpm to 850 rpm and dissolved oxygen control set at 10 percent of saturation condition. Biomass was determined by optical density at 540 nm and dry weight. Glycerol, lactate, pH and dissolved oxygen were measured from samples taken during cultivation. Outer membrane vesicle (OMV) concentration was determined by Lowry's method after ultracentrifugation. IRP presence was verified by SDS-PAGE. Highest biomass value, corresponding to the highest initial lactate concentration (7.84 g/L) was achieved at the 9th hour process time corresponding to 1.0 g/L dry biomass and 2.3 optical density at 540 nm. Lactate consumption was directly related to cell growth (yield factor: 0.24 g dry biomass / g lactate). Glycerol concentration in the medium did not change significantly during the process. OMV concentration reached the highest value of 80 mg/L at end cultivation time. The obtained results suggest that lactate is a main limiting growth factor and the maximum amount of antigen is obtained during stationary growth and cell death phases.


A doença meningocócica é uma causa importante de morte a nível mundial. Aproximadamente 330.000 casos e 35.000 mortes ocorrem anualmente. A cepa N.44/89 do sorogrupo B de Neisseria meningitidis é prevalente no Brasil. Suas vesículas de membrana externa (OMV - "outer membrane vesicles"), com proteínas reguladoras de ferro (IRP - "iron regulated proteins") liberadas no meio de cultura, são empregadas como antígeno para a produção da vacina. A fim ter o conhecimento sobre os parâmetros cinéticos, especialmente os valores finais da concentração de OMV, cultivos batelada de 20 hs foram realizados no meio de Catlin com limitação do ferro. As condições de processo compreenderam: biorreator de 7 litros, 36°C, 0,5 atm, vazão de ar de 1 L/min, agitação variando entre 250 a 850 rpm, controle do oxigênio dissolvido em 10 por cento da condição de saturação. A biomassa foi determinada pela densidade ótica em 540 nm e peso seco. Glicerol, lactato, pH e oxigênio dissolvido foram medidos das amostras retiradas durante o cultivo. A concentração de OMV foi determinada pelo método de Lowry após ultracentrifugação. A presença de IRP foi verificada por SDS-PAGE. O valor mais elevado de biomassa, correspondendo à concentração inicial mais elevada de lactato (7,84 g/L) foi obtido no tempo de processo de 9 horas, o qual corresponde a biomassa seca de 1,0 g/L e a densidade ótica de 2,3 em 540 nm. O consumo de lactato. foi relacionado diretamente ao crescimento celular (fator de conversão de 0,24 biomassa por lactato g/g). A concentração do glicerol no meio não se alterou significativamente ao longo do processo. A concentração de OMV alcançou o valor mais elevado de 80 mg/L no tempo final de cultivo. Os resultados obtidos sugerem que o lactato é o principal fator limitante do crescimento e o máximo do antígeno é obtido durante a fase estacionária de crescimento e de morte celular.


Subject(s)
Humans , Membranes , In Vitro Techniques , Neisseria meningitidis, Serogroup B/isolation & purification , Meningococcal Vaccines , Blister , Culture Media , Sampling Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...