Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 56(12): 2322-36, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26464281

ABSTRACT

Shiga toxins (Stxs) are produced by enterohemorrhagic Escherichia coli (EHEC), which cause human infections with an often fatal outcome. Vero cell lines, derived from African green monkey kidney, represent the gold standard for determining the cytotoxic effects of Stxs. Despite their global use, knowledge about the exact structures of the Stx receptor glycosphingolipids (GSLs) and their assembly in lipid rafts is poor. Here we present a comprehensive structural analysis of Stx receptor GSLs and their distribution to detergent-resistant membranes (DRMs), which were prepared from Vero-B4 cells and used as lipid raft equivalents. We identified globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) as the GSL receptors for Stx1a, Stx2a, and Stx2e subtypes using TLC overlay detection combined with MS. The uncommon Stx receptor, globopentaosylceramide (Gb5Cer, Galß3GalNAcß3Galα4Galß4Glcß1Cer), which was specifically recognized (in addition to Gb3Cer and Gb4Cer) by Stx2e, was fully structurally characterized. Lipoforms of Stx receptor GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:0/C24:1 or C16:0 fatty acid. Moreover, co-occurrence with lipid raft markers, SM and cholesterol, in DRMs suggested GSL association with membrane microdomains. This study provides the basis for further exploring the functional impact of lipid raft-associated Stx receptors for toxin-mediated injury of Vero-B4 cells.


Subject(s)
Glycosphingolipids/metabolism , Membrane Microdomains/metabolism , Receptors, Cell Surface/metabolism , Animals , Chlorocebus aethiops , Epithelial Cells/metabolism , Globosides/metabolism , Kidney/cytology , Shiga Toxin/metabolism , Trihexosylceramides/metabolism , Vero Cells
2.
Appl Environ Microbiol ; 80(1): 166-76, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24141127

ABSTRACT

Three succinate coenzyme A (succinate-CoA) ligases (SucCD) from Escherichia coli, Advenella mimigardefordensis DPN7(T), and Alcanivorax borkumensis SK2 were characterized regarding their substrate specificity concerning succinate analogues. Previous studies had suggested that SucCD enzymes might be promiscuous toward succinate analogues, such as itaconate and 3-sulfinopropionate (3SP). The latter is an intermediate of the degradation pathway of 3,3'-dithiodipropionate (DTDP), a precursor for the biotechnical production of polythioesters (PTEs) in bacteria. The sucCD genes were expressed in E. coli BL21(DE3)/pLysS. The SucCD enzymes of E. coli and A. mimigardefordensis DPN7(T) were purified in the native state using stepwise purification protocols, while SucCD from A. borkumensis SK2 was equipped with a C-terminal hexahistidine tag at the SucD subunit. Besides the preference for the physiological substrates succinate, itaconate, ATP, and CoA, high enzyme activity was additionally determined for both enantiomeric forms of malate, amounting to 10 to 21% of the activity with succinate. Km values ranged from 2.5 to 3.6 mM for l-malate and from 3.6 to 4.2 mM for d-malate for the SucCD enzymes investigated in this study. As l-malate-CoA ligase is present in the serine cycle for assimilation of C1 compounds in methylotrophs, structural comparison of these two enzymes as members of the same subsubclass suggested a strong resemblance of SucCD to l-malate-CoA ligase and gave rise to the speculation that malate-CoA ligases and succinate-CoA ligases have the same evolutionary origin. Although enzyme activities were very low for the additional substrates investigated, liquid chromatography/electrospray ionization-mass spectrometry analyses proved the ability of SucCD enzymes to form CoA-thioesters of adipate, glutarate, and fumarate. Since all SucCD enzymes were able to activate 3SP to 3SP-CoA, we consequently demonstrated that the activation of 3SP is not a unique characteristic of the SucCD from A. mimigardefordensis DPN7(T). The essential role of sucCD in the activation of 3SP in vivo was proved by genetic complementation.


Subject(s)
Alcaligenaceae/enzymology , Alcanivoraceae/enzymology , Coenzyme A/metabolism , Escherichia coli/enzymology , Malates/metabolism , Succinate-CoA Ligases/metabolism , Sulfur Compounds/metabolism , Acyl Coenzyme A/metabolism , Esters/metabolism , Kinetics , Substrate Specificity , Succinate-CoA Ligases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...