Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(3): 396-405, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437427

ABSTRACT

Space-time (ST) wave packets are propagation-invariant pulsed optical beams that travel freely in dielectrics at a tunable group velocity without diffraction or dispersion. Because ST wave packets maintain these characteristics even when only one transverse dimension is considered, they can realize surface-bound waves (e.g., surface plasmon polaritons at a metal-dielectric interface, which we call ST-SPPs) that have the same unique characteristics as their freely propagating counterparts. However, because the spatiotemporal spectral structure of ST-SPPs is key to their propagation invariance on the metal surface, their excitation methodology must be considered carefully. Using finite-difference time-domain simulations, we show that an appropriately synthesized ST wave packet in free space can be coupled to an ST-SPP via a single nanoscale slit inscribed in the metal surface. Our calculations confirm that this excitation methodology yields surface-bound ST-SPPs that are localized in all dimensions (and can thus be considered as plasmonic "bullets"), which travel rigidly at the metal-dielectric interface without diffraction or dispersion at a tunable group velocity.

2.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1142-1154, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37706767

ABSTRACT

When an optical pulse is focused into a multimode waveguide or fiber, the energy is divided among the available guided modes. Consequently, the initially localized intensity spreads transversely, the spatial profile undergoes rapid variations with axial propagation, and the pulse disperses temporally. Space-time (ST) supermodes are pulsed guided field configurations that propagate invariantly in multimode waveguides by assigning each mode to a prescribed wavelength. ST supermodes can be thus viewed as spectrally discrete, guided-wave counterparts of the recently demonstrated propagation-invariant ST wave packets in free space. The group velocity of an ST supermode is tunable independently-in principle-of the waveguide structure, group-velocity dispersion is eliminated or dramatically curtailed, and the time-averaged intensity profile is axially invariant along the waveguide in absence of mode-coupling. We establish here a theoretical framework for studying ST supermodes in planar waveguides. Modal engineering allows sculpting this axially invariant transverse intensity profile from an on-axis peak or dip (dark beam) to a multi-peak or flat distribution. Moreover, ST supermodes can be synthesized using spectrally incoherent light, thus paving the way to potential applications in optical beam delivery for lighting applications.

3.
Nat Commun ; 11(1): 6273, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33293548

ABSTRACT

Light is confined transversely and delivered axially in a waveguide. However, waveguides are lossy static structures whose modal characteristics are fundamentally determined by their boundary conditions. Here we show that unpatterned planar waveguides can provide low-loss two-dimensional waveguiding by using space-time wave packets, which are unique one-dimensional propagation-invariant pulsed optical beams. We observe hybrid guided space-time modes that are index-guided in one transverse dimension and localized along the unbounded dimension. We confirm that these fields enable overriding the boundary conditions by varying post-fabrication the group index of the fundamental mode in a 2-µm-thick, 25-mm-long silica film, achieved by modifying the field's spatio-temporal structure. Tunability of the group index over an unprecedented range from 1.26 to 1.77 is verified while maintaining a spectrally flat zero-dispersion profile. Our work paves the way to utilizing space-time wave packets in on-chip platforms, and enable phase-matching strategies that circumvent restrictions due to intrinsic material properties.

4.
Opt Express ; 27(21): 30653, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684309

ABSTRACT

The authors wish to acknowledge an additional funding source which was absent from our manuscript.

5.
Opt Express ; 27(20): 27682-27690, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684531

ABSTRACT

We report efficient coupling of a quantum cascade laser (QCL) into step-index chalcogenide fibers (As 2S 3). Mechanically robust and low-loss chalcogenide fibers were fabricated using a hybrid, multi-material thermal drawing process. With suitable free-space optics, more than 160 mW of optical power was coupled into the fiber with predominantly single-mode excitation. Antireflection coatings on the fiber facets enabled 88.9% transmission with strong core confinement. By accurately tailoring the core diameter and antireflection-coating thickness, these fibers offer a versatile platform for high-power and low-loss transmission across the infrared spectrum. This work introduces an attractive alternative to the use of hollow-core fibers or multimode solid-core fibers for diffraction-limited infrared beam delivery.

6.
Opt Lett ; 44(7): 1532-1535, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933083

ABSTRACT

While passive illumination schemes often utilize a broadband spectral acceptance, the performance of active illumination with a laser is improved by narrowband spectral filtering at the sensor. We present an experimental demonstration of an optical cavity structure that is capable of toggling between two performance limits: narrowband resonant and broadband omni-resonant transmission. To achieve omni-resonance without modifying the cavity, the incident optical field is pre-conditioned by associating each wavelength with a particular incidence angle that enables a broad continuous spectrum to resonate with the cavity. This strategy can help seamlessly combine passive and active illumination in the same system.

7.
Opt Express ; 25(8): 8604-8610, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28437938

ABSTRACT

The editors introduce the focus issue on "Advanced Solid-State Lasers (ASSL) 2016", which is based on the topics presented at a conference of the same name held in Boston, USA, from October 30 to November 3, 2016. This focus issue, jointly prepared by Optics Express and Optical Materials Express, includes 20 contributed papers (14 for Optics Express and 6 for Optical Materials Express) selected from the voluntary submissions from attendees who presented at the conference and have extended their work into complete research articles. We hope this focus issue provides a useful link to the variety of topical discussions held at the conference and will contribute to the further expansion of the associated research areas.

8.
Opt Express ; 23(6): 8170-8, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25837154

ABSTRACT

The editors introduce the focus issue on "Advanced Solid-State Lasers (ASSL) 2014," which is based on the topics presented at a congress of the same name held in Shanghai, China, from October 27 to November 1, 2014. This focus issue, jointly prepared by Optics Express and Optical Materials Express, includes 28 contributed papers (21 for Optics Express and 7 for Optical Materials Express) selected from the voluntary submissions by attendees who presented at the congress and have extended their work into complete research articles. We hope this focus issue offers a useful snapshot of the variety of topical discussions held at the congress and will contribute to the further expansion of the associated research areas.

9.
Opt Express ; 22(6): 7052-7, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24664054

ABSTRACT

A compact mid-infrared channel waveguide laser is demonstrated in Cr:ZnS with a view to power scaling chromium laser technology utilizing the thermo-mechanical advantages of Cr:ZnS over alternative transition metal doped II-VI semiconductor laser materials. The laser provided a maximum power of 101 mW of CW output at 2333 nm limited only by the available pump power. A maximum slope efficiency of 20% was demonstrated.

10.
Opt Lett ; 38(13): 2194-6, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23811874

ABSTRACT

We report a Cr:ZnSe channel waveguide laser operating at 2486 nm. A maximum power output of 285 mW is achieved and slope efficiencies as high as 45% are demonstrated. Ultrafast laser inscription is used to fabricate the depressed cladding waveguide in a polycrystalline Cr:ZnSe sample. Waveguide structures are proposed as a compact and robust solution to the thermal lensing problem that has so far limited power scaling of transition metal doped II-VI lasers.

11.
Opt Lett ; 37(23): 5021-3, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23330210

ABSTRACT

We report the demonstration of high-power (840 mW) continuous-wave laser oscillation from Fe2+ ions in zinc selenide. The output spectrum of the Fe:ZnSe laser had a line-center near 4140 nm with a linewidth of 80 nm. The beam quality was measured to be M2≤1.2 with a maximum slope efficiency of 47%. Small shifts observed in output wavelength with increased output power were attributed to thermal effects. No thermal roll-off of slope efficiency was observed at the maximum of output power.

12.
Opt Express ; 14(9): 3893-905, 2006 May 01.
Article in English | MEDLINE | ID: mdl-19516536

ABSTRACT

We have studied the concentration dependent fluorescence decay kinetics of ceramic Nd:YAG, to resolve inconsistencies in the previous literature. Our data indicate that earlier reports of single exponential lifetimes even at Nd concentrations of a few percent were due to the effects of long-pulse excitation. Under short-pulse excitation the fluorescence decay is nonexponential for concentrations greater than about 1% atomic. Energy migration to sinks consisting of cross-relaxing Nd ions dominates at long times, whereas single-step energy transfer to randomly distributed quenching sites dominates at earlier times. The concentration dependence of this single-step transfer indicates direct cross-relaxation between individual ions at concentrations below 4% atomic, but resonant transfer to quenching sites consisting of Nd pairs at higher concentrations.

13.
Appl Opt ; 42(36): 7191-6, 2003 Dec 20.
Article in English | MEDLINE | ID: mdl-14717298

ABSTRACT

We have demonstrated a target ranging and identification technique based on the timing modulation of a mode-locked laser coupled with fast incoherent detection. The range-to-target and the target-depth information have been determined with a resolution of better than 25 cm at single-pulse signal-to-noise ratios below 0.1. Our modeling results suggest that laser average power requirements remain a challenge, with upwards of 100 W likely needed for extension of this technique to ranges over 10 km, but improvements in overall system throughput would allow realization of its potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...