Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511026

ABSTRACT

The search for fluorescent proteins with large two-photon absorption (TPA) cross-sections and improved brightness is required for their efficient use in bioimaging. Here, we explored the impact of a single-point mutation close to the anionic form of the GFP chromophore on its TPA activity. We considered the lowest-energy transition of EGFP and its modification EGFP T203I. We focused on a methodology for obtaining reliable TPA cross-sections for mutated proteins, based on conformational sampling using molecular dynamics simulations and a high-level XMCQDPT2-based QM/MM approach. We also studied the numerical convergence of the sum-over-states formalism and provide direct evidence for the applicability of the two-level model for calculating TPA cross-sections in EGFP. The calculated values were found to be very sensitive to changes in the permanent dipole moments between the ground and excited states and highly tunable by internal electric field of the protein environment. In the case of the GFP chromophore anion, even a single hydrogen bond was shown to be capable of drastically increasing the TPA cross-section. Such high tunability of the nonlinear photophysical properties of the chromophore anions can be used for the rational design of brighter fluorescent proteins for bioimaging using two-photon laser scanning microscopy.


Subject(s)
Coloring Agents , Molecular Dynamics Simulation , Green Fluorescent Proteins/metabolism , Luminescent Proteins/chemistry , Molecular Conformation , Anions
2.
J Phys Chem Lett ; 12(35): 8664-8671, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34472871

ABSTRACT

The light-driven sodium-pump rhodopsin KR2 exhibits ultrafast photoisomerization dynamics of its all-trans protonated Schiff-base retinal (PSBR). However, the excited-state decay of KR2 also shows slow picosecond time constants, which are attributed to nonreactive states. The mechanism that produces long-lived states is unclear. Here, by using molecular dynamics simulations and large-scale XMCQDPT2-based QM/MM modeling, we explore the origin of reactive and nonreactive states in KR2. By calculating the S0-S1 vibronic band shapes, we gain insight into the early-time excited-state dynamics of PSBR and show that the protein environment can significantly alter vibrational modes that are active upon photoexcitation, thus facilitating photoisomerization from all-trans to 13-cis PSBR. Importantly, we reveal structural heterogeneity of the retinal-binding pocket of KR2, characterized by three distinct conformations, and conclude that the formation of a strong hydrogen bond between the retinal Schiff base and its counterion is essential for the ultrafast reaction dynamics.

3.
Phys Chem Chem Phys ; 17(26): 16997-7006, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26062782

ABSTRACT

The nature of absorption bandshapes of dibenzoylmethanatoboron difluoride (DBMBF2) dye substituted in ortho-, meta-, and para-positions of the phenyl ring is investigated using DFT and TDDFT with the range-separated hybrid CAM-B3LYP functional and the 6-311G(d,p) basis set. The solvent effects are taken into account within the polarized continuum model. The vibronic bandshape is simulated using a time-dependent linear coupling model with a vertical gradient approach through an original code. For flexible chromophores, the spectra of individual conformers are summed up with Boltzmann factors. It is shown that the long-wavelength absorption bandshape of DBMBF2 derivatives is determined by three factors: the relative statistical weights of conformers with different electronic absorption patterns, the relative position and intensity of the second low-energy electronic transition, and the vibronic structure of individual electronic peaks. The latter is governed by the relationship between the hard vibrational modes, which contribute to vibronic progression, and soft modes, which provide broadening of the peaks. The simulated spectra of the dyes in the study are generally consistent with the available experimental data and explain the observed spectral features.

4.
J Phys Chem A ; 115(18): 4565-73, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21504216

ABSTRACT

An ab initio approach is developed for calculation of low-lying excited states in Ln(3+) complexes with organic ligands. The energies of the ground and excited states are calculated using the XMCQDPT2/CASSCF approximation; the 4f electrons of the Ln(3+) ion are included in the core, and the effects of the core electrons are described by scalar quasirelativistic 4f-in-core pseudopotentials. The geometries of the complexes in the ground and triplet excited states are fully optimized at the CASSCF level, and the resulting excited states have been found to be localized on one of the ligands. The efficiency of ligand-to-lanthanide energy transfer is assessed based on the relative energies of the triplet excited states localized on the organic ligands with respect to the receiving and emitting levels of the Ln(3+) ion. It is shown that ligand relaxation in the excited state should be properly taken into account in order to adequately describe energy transfer in the complexes. It is demonstrated that the efficiency of antenna ligands for lanthanide complexes used as phosphorescent emitters in organic light-emitting devices can be reasonably predicted using the procedure suggested in this work. Hence, the best antenna ligands can be selected in silico based on theoretical calculations of ligand-localized excited energy levels.


Subject(s)
Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Electrochemistry , Ligands , Luminescent Measurements , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...