Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 129(11): 4863-4874, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31408443

ABSTRACT

Fibronectin in the vascular wall promotes inflammatory activation of the endothelium during vascular remodeling and atherosclerosis. These effects are mediated in part by fibronectin binding to integrin α5, which recruits and activates phosphodiesterase 4D5 (PDE4D5) by inducing its dephosphorylation on an inhibitory site Ser651. Active PDE then hydrolyzes anti-inflammatory cAMP to facilitate inflammatory signaling. To test this model in vivo, we mutated the integrin binding site in PDE4D5 in mice. This mutation reduced endothelial inflammatory activation in athero-prone regions of arteries, and, in a hyperlipidemia model, reduced atherosclerotic plaque size while increasing markers of plaque stability. We then investigated the mechanism of PDE4D5 activation. Proteomics identified the PP2A regulatory subunit B55α as the factor recruiting PP2A to PDE4D5. The B55α-PP2A complex localized to adhesions and directly dephosphorylated PDE4D5. This interaction also unexpectedly stabilized the PP2A-B55α complex. The integrin-regulated, pro-atherosclerotic transcription factor Yap is also dephosphorylated and activated through this pathway. PDE4D5 therefore mediates matrix-specific regulation of EC phenotype via an unconventional adapter role, assembling and anchoring a multifunctional PP2A complex with other targets. These results are likely to have widespread consequences for control of cell function by integrins.


Subject(s)
Atherosclerosis/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Integrin alpha5beta1/metabolism , Protein Phosphatase 2/metabolism , Second Messenger Systems , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cyclic AMP/genetics , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Integrin alpha5beta1/genetics , Mice , Mice, Mutant Strains , Protein Phosphatase 2/genetics
2.
J Biol Chem ; 293(34): 13022-13032, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29929984

ABSTRACT

The actin-binding protein cortactin promotes the formation and maintenance of actin-rich structures, including lamellipodial protrusions in fibroblasts and neuronal dendritic spines. Cortactin cellular functions have been attributed to its activation of the Arp2/3 complex, which stimulates actin branch nucleation, and to its recruitment of Rho family GTPase regulators. Cortactin also binds actin filaments and significantly slows filament depolymerization, but the mechanism by which it does so and the relationship between actin binding and stabilization are unclear. Here we elucidated the cortactin regions that are necessary and sufficient for actin filament binding and stabilization. Using actin cosedimentation assays, we found that the cortactin repeat region binds actin but that the adjacent linker region is required for binding with the same affinity as full-length cortactin. Using total internal reflection fluorescence microscopy to measure the rates of single filament actin depolymerization, we observed that cortactin-actin interactions are sufficient to stabilize actin filaments. Moreover, conserved charged residues in repeat 4 were necessary for high-affinity actin binding, and substitution of these residues significantly impaired cortactin-mediated actin stabilization. Cortactin bound actin with higher affinity than did its paralog, hematopoietic cell-specific Lyn substrate 1 (HS1), and the effects on actin stability were specific to cortactin. Finally, cortactin stabilized ADP-actin filaments, indicating that the stabilization mechanism does not depend on the actin nucleotide state. Together, these results indicate that cortactin binding to actin is necessary and sufficient to stabilize filaments in a concentration-dependent manner, specific to conserved residues in the cortactin repeats, and independent of the actin nucleotide state.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/chemistry , Actins/metabolism , Adenosine Diphosphate/metabolism , Cortactin/metabolism , Mutation , Protein Interaction Domains and Motifs , Amino Acid Substitution , Animals , Cortactin/chemistry , Cortactin/genetics , Mice , Protein Binding
3.
J Neuroimmune Pharmacol ; 13(2): 265-276, 2018 06.
Article in English | MEDLINE | ID: mdl-29550892

ABSTRACT

Multiple sclerosis is a neuroinflammatory degenerative disease, caused by activated immune cells infiltrating the CNS. The disease etiology involves both genetic and environmental factors. The mouse genetic locus, Eae27, linked to disease development in the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis, was studied in order to identify contributing disease susceptibility factors and potential drug targets for multiple sclerosis. Studies of an Eae27 congenic mouse strain, revealed that genetic variation within Eae27 influences EAE development. The Abl2 gene, encoding the non-receptor tyrosine kinase Arg, is located in the 4,1 megabase pair long Eae27 region. The Arg protein plays an important role in cellular regulation and is, in addition, involved in signaling through the B- and T-cell receptors, important for the autoimmune response. The presence of a single nucleotide polymorphism causing an amino acid change in a near actin-interacting domain of Arg, in addition to altered lymphocyte activation in the congenic mice upon immunization with myelin antigen, makes Abl2/Arg a candidate gene for EAE. Here we demonstrate that the non-synonymous SNP does not change Arg's binding affinity for F-actin but suggest a role for Abl kinases in CNS inflammation pathogenesis by showing that pharmacological inhibition of Abl kinases ameliorates EAE, but not experimental arthritis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Protein-Tyrosine Kinases/genetics , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Mice, Mutant Strains , Polymorphism, Single Nucleotide , Protein-Tyrosine Kinases/immunology , Protein-Tyrosine Kinases/metabolism
4.
Sci Rep ; 7(1): 16696, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196701

ABSTRACT

The multi-domain protein, cortactin, contains a 37-residue repeating motif that binds to actin filaments. This cortactin repeat region comprises 6½ similar copies of the motif and binds actin filaments. To better understand this region of cortactin, and its fold, we conducted extensive biophysical analysis. Size exclusion chromatography with multi-angle light scattering (SEC-MALS) reveals that neither constructs of the cortactin repeats alone or together with the adjacent helical region homo-oligomerize. Using circular dichroism (CD) we find that in solution the cortactin repeats resemble a coil-like intrinsically disordered protein. Small-angle X-ray scattering (SAXS) also indicates that the cortactin repeats are intrinsically unfolded, and the experimentally observed radius of gyration (R g) is coincidental to that calculated by the program Flexible-Meccano for an unfolded peptide of this length. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicates that the domain contains limited hydrophobic core regions. These experiments therefore provide evidence that in solution the cortactin repeat region of cortactin is intrinsically disordered.


Subject(s)
Cortactin/chemistry , Amino Acid Sequence , Circular Dichroism , Cortactin/metabolism , Deuterium Exchange Measurement , Mass Spectrometry , Protein Conformation, alpha-Helical , Protein Unfolding , Scattering, Small Angle , X-Ray Diffraction
5.
Chemistry ; 22(10): 3378-3386, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26844928

ABSTRACT

The synthesis of structurally relevant compounds that model the chemical behavior and supramolecular aggregation of the asphaltenes, the most polar and metal-rich fraction of heavy petroleum, has been extended to include fusions of important petroleum biomarkers. The synthetic protocol features a multicomponent reaction to form a dyad composed of a fused steroidal naphthoquinoline, followed by a pyrrole cyclocondensation reaction to incorporate the dyad into a chiral triad containing a NiII -porphyrin substituent. This synthetic protocol has been used to prepare large molecules that represent both "continental" and "archipelago" models of asphaltene composition. The steroid-naphthoquinoline-porphyrin triads have been studied by UV/Vis and circular dichroism (CD) spectroscopies, and the results suggest that the naphthoquinoline core, a tetrahydro[4]helicene, adopts a helical conformation, producing a CD signal electronically related to the characteristic Soret absorption band of the porphyrin subunit. Finally, supramolecular aspects of asphaltene aggregation have been examined on a molecular level through analysis of axial coordination of pyridine to the Ni-porphyrin. The relative affinity of pyridine for binding to the Ni center of the porphyrin is evaluated by comparing binding propensities in a series of sterically differentiated substituted porphyrins.

6.
Org Lett ; 17(23): 5930-3, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26584791

ABSTRACT

A multicomponent cyclocondensation reaction between 2-aminoanthracene, aromatic aldehydes, and 5-α-cholestan-3-one has been used to synthesize model asphaltene compounds. The active catalyst for this reaction has been identified as hydriodic acid, which is formed in situ from the reaction of iodine with water, while iodine is not a catalyst under anhydrous conditions. The products, which contain a tetrahydro[4]helicene moiety, are optically active, and the stereochemical characteristics have been examined by VT-NMR and VT-CD spectroscopies, as well as X-ray crystallography.


Subject(s)
Acids/chemistry , Iodine Compounds/chemistry , Naphthoquinones/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Steroids/chemistry , Aldehydes/chemistry , Anthracenes/chemistry , Catalysis , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...