Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(1): 103567, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34988405

ABSTRACT

Progressive addition lenses (PALs) are ophthalmic lenses to correct presbyopia by providing improvements of near and far vision in different areas of the lens, but distorting the periphery of the wearer's field of view. Distortion-related difficulties reported by PAL wearers include unnatural self-motion perception. Visual self-motion perception is guided by optic flow, the pattern of retinal motion produced by self-motion. We tested the influence of PAL distortions on optic flow-based heading estimation using a model of heading perception and a virtual reality-based psychophysical experiment. The model predicted changes of heading estimation along a vertical axis, depending on visual field size and gaze direction. Consistent with this prediction, participants experienced upwards deviations of self-motion when gaze through the periphery of the lens was simulated, but not for gaze through the center. We conclude that PALs may lead to illusions of self-motion which could be remedied by a careful gaze strategy.

2.
Ultramicroscopy ; 184(Pt A): 61-70, 2018 01.
Article in English | MEDLINE | ID: mdl-28850867

ABSTRACT

Non-volatile resistance change under electric stimulation in many metal-oxides is a promising path to next generation memory devices. However, the underlying mechanisms are still not fully understood. In situ transmission electron microscopy experiments provide a powerful tool to elucidate these mechanisms. In this contribution, we demonstrate a TEM lamella geometry for in situ biasing with two fixed electrode contacts ensuring low and stable contact resistances. We use Pr1-xCaxMnO3-δ sandwiched by Pt electrodes as model system. The evolution of manganese valence state during electric stimulation in different environments is mapped by means of electron energy loss spectroscopy with high spatial resolution in STEM. Correlation of Mn valence with local oxygen content is found. In addition to electrically driven switching, beam-induced redox reactions in oxygen environment are observed. This effect might be restricted to thin lamellae. In general, our results support that bulk oxygen electromigration is the relevant mechanism for non-volatile resistive switching in PCMO.

3.
Nanoscale ; 6(16): 9852-62, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25029190

ABSTRACT

The mechanism of the electric-pulse induced resistance change effect in Au/Pr0.65Ca0.35MnO3/SrTi0.99Nb0.01O3 thin-film samples is studied by means of in situ electrical stimulation inside a transmission electron microscope. A detailed equivalent-circuit model analysis of the measured current-voltage characteristics provides crucial information for the proper interpretation of the microscopy results. The electrical transport data of the electron-transparent samples used for the in situ investigations is verified by comparison to measurements of unpatterned thin-film samples. We find comprehensive evidence for electrochemical oxygen vacancy migration affecting the potential barrier of the pn junction between Pr0.65Ca0.35MnO3 and SrTi0.99Nb0.01O3 as well as the resistance of the manganite bulk. The high-resistance state formation in the Pr0.65Ca0.35MnO3 bulk is frequently accompanied by structural transformations, namely detwinning and superstructure formation, most likely as the result of the joint impact of dynamic charge inhomogenities by oxygen vacancy migration and injection of high carrier densities at the electrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...