Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Elife ; 82019 06 11.
Article in English | MEDLINE | ID: mdl-31184304

ABSTRACT

Regulated proinsulin biosynthesis, disulfide bond formation and ER redox homeostasis are essential to prevent Type two diabetes. In ß cells, protein disulfide isomerase A1 (PDIA1/P4HB), the most abundant ER oxidoreductase of over 17 members, can interact with proinsulin to influence disulfide maturation. Here we find Pdia1 is required for optimal insulin production under metabolic stress in vivo. ß cell-specific Pdia1 deletion in young high-fat diet fed mice or aged mice exacerbated glucose intolerance with inadequate insulinemia and increased the proinsulin/insulin ratio in both serum and islets compared to wildtype mice. Ultrastructural abnormalities in Pdia1-null ß cells include diminished insulin granule content, ER vesiculation and distention, mitochondrial swelling and nuclear condensation. Furthermore, Pdia1 deletion increased accumulation of disulfide-linked high molecular weight proinsulin complexes and islet vulnerability to oxidative stress. These findings demonstrate that PDIA1 contributes to oxidative maturation of proinsulin in the ER to support insulin production and ß cell health.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , Obesity/metabolism , Procollagen-Proline Dioxygenase/metabolism , Proinsulin/metabolism , Protein Disulfide-Isomerases/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Disulfides/metabolism , Endoplasmic Reticulum/metabolism , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Mice, Knockout , Mice, Transgenic , Mitochondrial Swelling , Obesity/etiology , Obesity/genetics , Oxidative Stress , Procollagen-Proline Dioxygenase/genetics , Protein Disulfide-Isomerases/genetics
2.
PLoS Biol ; 13(10): e1002277, 2015 10.
Article in English | MEDLINE | ID: mdl-26469762

ABSTRACT

Although glucose uniquely stimulates proinsulin biosynthesis in ß cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α) to initiate X-box-binding protein 1 (Xbp1) mRNA splicing in adult primary ß cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective ß cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, ß cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in ß cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with ß cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the ß cell for increased proinsulin synthesis and to limit oxidative stress that leads to ß cell failure.


Subject(s)
Alternative Splicing , DNA-Binding Proteins/metabolism , Endoribonucleases/metabolism , Hyperglycemia/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Oxidative Stress , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Adolescent , Adult , Animals , Cells, Cultured , Crosses, Genetic , DNA-Binding Proteins/genetics , Endoribonucleases/genetics , Female , Humans , Hyperglycemia/blood , Hyperglycemia/pathology , Insulin Secretion , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/ultrastructure , Male , Mice, Knockout , Mice, Transgenic , Middle Aged , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins/metabolism , Regulatory Factor X Transcription Factors , Signal Transduction , Tissue Donors , Transcription Factors/genetics , X-Box Binding Protein 1 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...