Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Stem Cell Res Ther ; 15(1): 94, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561840

ABSTRACT

BACKGROUND: Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS: In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS: The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS: Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.


Subject(s)
Extracellular Vesicles , Muscular Atrophy, Spinal , Humans , Child , Mice , Animals , Disease Models, Animal , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Muscular Atrophy, Spinal/pathology , Motor Neurons , Stem Cells/metabolism , Extracellular Vesicles/metabolism
3.
Nat Neurosci ; 23(11): 1339-1351, 2020 11.
Article in English | MEDLINE | ID: mdl-33077946

ABSTRACT

Microglia and peripheral macrophages have both been implicated in amyotrophic lateral sclerosis (ALS), although their respective roles have yet to be determined. We now show that macrophages along peripheral motor neuron axons in mouse models and patients with ALS react to neurodegeneration. In ALS mice, peripheral myeloid cell infiltration into the spinal cord was limited and depended on disease duration. Targeted gene modulation of the reactive oxygen species pathway in peripheral myeloid cells of ALS mice, using cell replacement, reduced both peripheral macrophage and microglial activation, delayed symptoms and increased survival. Transcriptomics revealed that sciatic nerve macrophages and microglia reacted differently to neurodegeneration, with abrupt temporal changes in macrophages and progressive, unidirectional activation in microglia. Modifying peripheral macrophages suppressed proinflammatory microglial responses, with a shift toward neuronal support. Thus, modifying macrophages at the periphery has the capacity to influence disease progression and may be of therapeutic value for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Axons/immunology , Macrophages/immunology , Microglia/immunology , Motor Neurons/immunology , Sciatic Nerve/immunology , Adult , Aged , Amyotrophic Lateral Sclerosis/metabolism , Animals , Female , Humans , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Middle Aged , Motor Neurons/metabolism , Sciatic Nerve/metabolism , Spinal Cord/immunology , Spinal Cord/metabolism
4.
Int J Mol Sci ; 21(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455791

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motoneurons. To date, there is no effective treatment available. Exosomes are extracellular vesicles that play important roles in intercellular communication, recapitulating the effect of origin cells. In this study, we tested the potential neuroprotective effect of exosomes isolated from adipose-derived stem cells (ASC-exosomes) on the in vivo model most widely used to study ALS, the human SOD1 gene with a G93A mutation (SOD1(G93A)) mouse. Moreover, we compared the effect of two different routes of exosomes administration, intravenous and intranasal. The effect of exosomes administration on disease progression was monitored by motor tests and analysis of lumbar motoneurons and glial cells, neuromuscular junction, and muscle. Our results demonstrated that repeated administration of ASC-exosomes improved the motor performance; protected lumbar motoneurons, the neuromuscular junction, and muscle; and decreased the glial cells activation in treated SOD1(G93A) mice. Moreover, exosomes have the ability to home to lesioned ALS regions of the animal brain. These data contribute by providing additional knowledge for the promising use of ASC-exosomes as a therapy in human ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Exosomes/transplantation , Mesenchymal Stem Cell Transplantation/methods , Adipose Tissue/cytology , Amyotrophic Lateral Sclerosis/genetics , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Motor Neurons/metabolism , Motor Neurons/physiology , Movement , Mutation, Missense , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
5.
Front Neurosci ; 13: 1070, 2019.
Article in English | MEDLINE | ID: mdl-31680811

ABSTRACT

The amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneurons death. Mutations in the superoxide dismutase 1 (SOD1) protein have been identified to be related to the disease. Beyond the different altered pathways, the mitochondrial dysfunction is one of the major features that leads to the selective death of motoneurons in ALS. The NSC-34 cell line, overexpressing human SOD1(G93A) mutant protein [NSC-34(G93A)], is considered an optimal in vitro model to study ALS. Here we investigated the energy metabolism in NSC-34(G93A) cells and in particular the effect of the mutated SOD1(G93A) protein on the mitochondrial respiratory capacity (complexes I-IV) by high resolution respirometry (HRR) and cytofluorimetry. We demonstrated that NSC-34(G93A) cells show a reduced mitochondrial oxidative capacity. In particular, we found significant impairment of the complex I-linked oxidative phosphorylation, reduced efficiency of the electron transfer system (ETS) associated with a higher rate of dissipative respiration, and a lower membrane potential. In order to rescue the effect of the mutated SOD1 gene on mitochondria impairment, we evaluated the efficacy of the exosomes, isolated from adipose-derived stem cells, administrated on the NSC-34(G93A) cells. These data show that ASCs-exosomes are able to restore complex I activity, coupling efficiency and mitochondrial membrane potential. Our results improve the knowledge about mitochondrial bioenergetic defects directly associated with the SOD1(G93A) mutation, and prove the efficacy of adipose-derived stem cells exosomes to rescue the function of mitochondria, indicating that these vesicles could represent a valuable approach to target mitochondrial dysfunction in ALS.

6.
Cells ; 8(9)2019 09 14.
Article in English | MEDLINE | ID: mdl-31540100

ABSTRACT

Stem cell therapy represents a promising approach in the treatment of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). The beneficial effect of stem cells is exerted by paracrine mediators, as exosomes, suggesting a possible potential use of these extracellular vesicles as non-cell based therapy. We demonstrated that exosomes isolated from adipose stem cells (ASC) display a neuroprotective role in an in vitro model of ALS. Moreover, the internalization of ASC-exosomes by the cells was shown and the molecules and the mechanisms by which exosomes could exert their beneficial effect were addressed. We performed for the first time a comprehensive proteomic analysis of exosomes derived from murine ASC. We identified a total of 189 proteins and the shotgun proteomics analysis revealed that the exosomal proteins are mainly involved in cell adhesion and negative regulation of the apoptotic process. We correlated the protein content to the anti-apoptotic effect of exosomes observing a downregulation of pro-apoptotic proteins Bax and cleaved caspase-3 and upregulation of anti-apoptotic protein Bcl-2 α, in an in vitro model of ALS after cell treatment with exosomes. Overall, this study shows the neuroprotective effect of ASC-exosomes after their internalization and their global protein profile, that could be useful to understand how exosomes act, demonstrating that they can be employed as therapy in neurodegenerative diseases.


Subject(s)
Adipocytes/metabolism , Apoptosis , Exosomes/metabolism , Models, Biological , Proteomics , Stem Cells/metabolism , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Neuroprotective Agents/metabolism
7.
Sci Rep ; 8(1): 12875, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30150770

ABSTRACT

Dysregulation in acetylation homeostasis has been implicated in the pathogenesis of the amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. It is known that the acetylation of transcriptional factors regulates their activity. The acetylation state of NF-kB RelA has been found to dictate the neuroprotective versus the neurotoxic effect of p50/RelA. Here we showed that the pro-apoptotic acetylation mode of RelA, involving a general lysine deacetylation of the subunit with the exclusion of the lysine 310, is evident in the lumbar spinal cord of SOD1(G93A) mice, a murine model of ALS. The administration of the HDAC inhibitor MS-275 and the AMPK/sirtuin 1 activator resveratrol restored the normal RelA acetylation in SOD1(G93A) mice. The SOD1(G93A) mice displayed a 3 weeks delay of the disease onset, associated with improvement of motor performance, and 2 weeks increase of lifespan. The epigenetic treatment rescued the lumbar motor neurons affected in SOD1(G93A) mice, accompanied by increased levels of protein products of NF-kB-target genes, Bcl-xL and brain-derived neurotrophic factor. In conclusion, we here demonstrate that MS-275 and resveratrol restore the acetylation state of RelA in the spinal cord, delaying the onset and increasing the lifespan of SOD1(G93A) mice.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/mortality , Epigenesis, Genetic/drug effects , Neuroprotective Agents/pharmacology , Transcription Factor RelA/metabolism , Acetylation , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/etiology , Animals , Biomarkers , Disease Models, Animal , Histones/metabolism , Mice , Motor Neurons/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Prognosis , Resveratrol/pharmacology , Signal Transduction , Spinal Cord/metabolism , Superoxide Dismutase/metabolism , Treatment Outcome
8.
Magn Reson Med ; 79(1): 459-469, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28370153

ABSTRACT

PURPOSE: The first part of the experiment identifies and validates MRI biomarkers distinctive of the disease progression in the transgenic superoxide dismutase gene (SOD1(G93A)) animal model. The second part assesses the efficacy of a mesenchymal stem cell-based therapy through the MRI biomarkers previously defined. METHODS: The first part identifies MRI differences between SOD1(G93A) and healthy mice. The second part of the experiment follows the disease evolution of stem cell-treated and non-stem-cell treated SOD1(G93A) mice. The analysis focused on voxel-based morphometry and T2 mapping on the brain tissues, and T2-weighted imaging and diffusion tensor imaging (DTI) on the hind limbs. RESULTS: Comparing diseased mice to healthy control revealed gray matter alterations in the brainstem area, accompanied by increased T2 relaxation time. Differences in muscle volume, muscle signal intensity, fractional anisotropy, axial diffusivity, and radial diffusivity were measured in the hind limbs. In the comparison between stem cell-treated mice and nontreated ones, differences in muscle volume, muscle signal intensity, and DTI-derived maps were found. CONCLUSION: MRI-derived biomarkers can be used to identify differences between stem cell-treated and nontreated SOD1(G93A) mice. Magn Reson Med 79:459-469, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Stem Cell Transplantation , Stem Cells , Superoxide Dismutase-1/genetics , Animals , Anisotropy , Behavior, Animal , Biomarkers/metabolism , Brain/metabolism , Brain Stem/metabolism , Diffusion Tensor Imaging , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Phenotype , Promoter Regions, Genetic , Superoxide Dismutase/genetics , Transgenes
9.
Cell Death Dis ; 8(12): 3223, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29259166

ABSTRACT

Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease, due to homozygous mutations or deletions in the telomeric survival motoneuron gene 1 (SMN1). SMA is characterized by motor impairment, muscle atrophy, and premature death following motor neuron (MN) degeneration. Emerging evidence suggests that dysregulation of autophagy contributes to MN degeneration. We here investigated the role of autophagy in the SMNdelta7 mouse model of SMA II (intermediate form of the disease) which leads to motor impairment by postnatal day 5 (P5) and to death by P13. We first showed by immunoblots that Beclin 1 and LC3-II expression levels increased in the lumbar spinal cord of the SMA pups. Electron microscopy and immunofluorescence studies confirmed that autophagic markers were enhanced in the ventral horn of SMA pups. To clarify the role of autophagy, we administered intracerebroventricularly (at P3) either an autophagy inhibitor (3-methyladenine, 3-MA), or an autophagy inducer (rapamycin) in SMA pups. Motor behavior was assessed daily with different tests: tail suspension, righting reflex, and hindlimb suspension tests. 3-MA significantly improved motor performance, extended the lifespan, and delayed MN death in lumbar spinal cord (10372.36 ± 2716 MNs) compared to control-group (5148.38 ± 94 MNs). Inhibition of autophagy by 3-MA suppressed autophagosome formation, reduced the apoptotic activation (cleaved caspase-3 and Bcl2) and the appearance of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive neurons, underlining that apoptosis and autophagy pathways are intricately intertwined. Therefore, autophagy is likely involved in MN death in SMA II, suggesting that it might represent a promising target for delaying the progression of SMA in humans as well.


Subject(s)
Autophagy/drug effects , Motor Neurons/enzymology , Motor Neurons/metabolism , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , Adenine/analogs & derivatives , Adenine/therapeutic use , Animals , Apoptosis/drug effects , Disease Models, Animal , Genotype , In Situ Nick-End Labeling , Mice , Sirolimus/pharmacology
10.
Curr Protoc Cell Biol ; 75: 3.44.1-3.44.15, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28627754

ABSTRACT

Adipose stem cells (ASC) represent a promising therapeutic approach for neurodegenerative diseases. Most biological effects of ASC are probably mediated by extracellular vesicles, such as exosomes, which influence the surrounding cells. Current development of exosome therapies requires efficient and noninvasive methods to localize, monitor, and track the exosomes. Among imaging methods used for this purpose, magnetic resonance imaging (MRI) has advantages: high spatial resolution, rapid in vivo acquisition, and radiation-free operation. To be detectable with MRI, exosomes must be labeled with MR contrast agents, such as ultra-small superparamagnetic iron oxide nanoparticles (USPIO). Here, we set up an innovative approach for exosome labeling that preserves their morphology and physiological characteristics. We show that by labeling ASC with USPIO before extraction of nanovesicles, the isolated exosomes retain nanoparticles and can be visualized by MRI. The current work aims at validating this novel USPIO-based exosome labeling method by monitoring the efficiency of the labeling with MRI both in ASC and in exosomes. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Adipose Tissue/cytology , Contrast Media/chemistry , Dextrans/chemistry , Exosomes/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Stem Cells/cytology , Animals , Cells, Cultured , Mice, Inbred C57BL , Staining and Labeling/methods , Stem Cells/chemistry
11.
Int J Nanomedicine ; 11: 2481-90, 2016.
Article in English | MEDLINE | ID: mdl-27330291

ABSTRACT

PURPOSE: Recent findings indicate that the beneficial effects of adipose stem cells (ASCs), reported in several neurodegenerative experimental models, could be due to their paracrine activity mediated by the release of exosomes. The aim of this study was the development and validation of an innovative exosome-labeling protocol that allows to visualize them with magnetic resonance imaging (MRI). MATERIALS AND METHODS: At first, ASCs were labeled using ultrasmall superparamagnetic iron oxide nanoparticles (USPIO, 4-6 nm), and optimal parameters to label ASCs in terms of cell viability, labeling efficiency, iron content, and magnetic resonance (MR) image contrast were investigated. Exosomes were then isolated from labeled ASCs using a standard isolation protocol. The efficiency of exosome labeling was assessed by acquiring MR images in vitro and in vivo as well as by determining their iron content. Transmission electron microscopy images and histological analysis were performed to validate the results obtained. RESULTS: By using optimized experimental parameters for ASC labeling (200 µg Fe/mL of USPIO and 72 hours of incubation), it was possible to label 100% of the cells, while their viability remained comparable to unlabeled cells; the detection limit of MR images was of 10(2) and 2.5×10(3) ASCs in vitro and in vivo, respectively. Exosomes isolated from previously labeled ASCs retain nanoparticles, as demonstrated by transmission electron microscopy images. The detection limit by MRI was 3 µg and 5 µg of exosomes in vitro and in vivo, respectively. CONCLUSION: We report a new approach for labeling of exosomes by USPIO that allows detection by MRI while preserving their morphology and physiological characteristics.


Subject(s)
Dextrans/metabolism , Exosomes/metabolism , Magnetic Resonance Imaging/methods , Staining and Labeling , Stem Cells/metabolism , Adipose Tissue/cytology , Animals , Cell Proliferation , Cell Survival , Endocytosis , Exosomes/ultrastructure , Intracellular Space/metabolism , Iron/analysis , Magnetite Nanoparticles , Male , Mice, Inbred C57BL , Stem Cells/cytology , Stem Cells/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...