Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 141(3): 2044-51, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23870926

ABSTRACT

Transient receptor potential (TRP) channels represent interesting molecular target structures involved in a number of different physiological and pathophysiological systems. In particular, TRPA1 channel is involved in nociception and in sensory perception of many pungent chemesthetic compounds, which are widespread in spices and food plants, including Perilla frutescens. A natural compound from P. frutescens (isoegomaketone) and 16 synthetic derivatives of perillaketone have been prepared and tested in vitro on rTRPA1 expressed in HEK293 cells and their potency, efficacy and desensibilisation activity measured. Most derivatives proved to be high potency agonists of TRPA1, with a potency higher than most natural agonists reported in the literature. These furylketones derivatives, represent a new class of chemical structures active on TRPA1 with many potential applications in the agrifood and pharmaceutical industry.


Subject(s)
Monoterpenes/chemistry , Perilla/chemistry , Plant Extracts/chemistry , Transient Receptor Potential Channels/agonists , Animals , HEK293 Cells , Humans , Kinetics , Molecular Structure , Monoterpenes/chemical synthesis , Plant Extracts/chemical synthesis , Rats , Transient Receptor Potential Channels/chemistry
2.
Cell Mol Life Sci ; 60(3): 607-16, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12737320

ABSTRACT

Cannabinoid CB1 receptors and vanilloid VR1 receptors are co-localized to some extent in sensory neurons of the spinal cord and dorsal root ganglia. In this study, we over-expressed both receptor types in human embryonic kidney (HEK)-293 cells and investigated the effect of the CB1 agonist HU-210 on the VR1-mediated increase in intracellular Ca2+ ([Ca2+]i), a well-known response of the prototypical VR1 agonist capsaicin. After a 5-min pre-treatment, HU-210 (0.1 microM) significantly enhanced the effect of several concentrations of capsaicin on [Ca2+]i in HEK-293 cells over-expressing both rat CB1 and human VR1 (CB1-VR1-HEK cells), but not in cells over-expressing only human VR1 (VR1-HEK cells). This effect was blocked by the CB1 receptor antagonist SR141716A (0.5 microM), and by phosphoinositide-3-kinase and phospholipase C inhibitors. The endogenous agonist of CB1 and VR1 receptors, anandamide, was more efficacious in inducing a VR1-mediated stimulation of [Ca2+]i in CB1-VR1-HEK cells than in VR1-HEK cells, and part of its effect on the former cells was blocked by SR141716A (0.5 microM). Pre-treatment of CB1-VR1-HEK cells with forskolin, an adenylate cyclase activator, enhanced the capsaicin effect on [Ca2+]i. HU-210, which in the same cells inhibits forskolin-induced enhancement of cAMP levels, blocked the stimulatory effect of forskolin on capsaicin. Our data suggest that in cells co-expressing both CB1 and VR1 receptors, pre-treatment with CB1 agonists inhibits or stimulates VR1 gating by capsaicin depending on whether or not cAMP-mediated signalling has been concomitantly activated.


Subject(s)
Calcium/metabolism , Dronabinol/analogs & derivatives , Receptors, Drug/metabolism , Arachidonic Acids/pharmacology , Calcium Channel Blockers/pharmacology , Cannabinoids/pharmacology , Capsaicin/metabolism , Cyclic AMP/metabolism , Dronabinol/pharmacology , Endocannabinoids , Humans , Polyunsaturated Alkamides , Receptors, Cannabinoid , Receptors, Drug/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...