Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005402

ABSTRACT

Proper regulation of organelle dynamics is critical for cellular function, but the mechanisms coordinating multiple organelles remain poorly understood. Here we show that actin polymerization mediated by the endoplasmic reticulum (ER)-anchored formin INF2 acts as a master regulator of organelle morphology and movement. Using high-resolution imaging, we demonstrate that INF2-polymerized actin filaments assemble at ER contact sites on mitochondria, endosomes, and lysosomes just prior to their fission. Genetic manipulation of INF2 activity alters the size, shape and motility of all three organelles. Our findings reveal a conserved mechanism by which the ER uses actin polymerization to control diverse organelles, with implications for understanding organelle dysfunction in neurodegenerative and other diseases. This work establishes INF2-mediated actin assembly as a central coordinator of organelle dynamics and inter-organelle communication.

2.
Nat Cell Biol ; 26(2): 194-206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332353

ABSTRACT

Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.


Subject(s)
DNA, Mitochondrial , DNA-Binding Proteins , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA Replication , Endosomes/metabolism , Nucleotidyltransferases/genetics , Inflammation/genetics , Mitochondrial Proteins/metabolism
3.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398222

ABSTRACT

Mitochondria play a crucial role in the regulation of cellular metabolism and signalling. Mitochondrial activity is modulated by the processes of mitochondrial fission and fusion, which are required to properly balance respiratory and metabolic functions, transfer material between mitochondria, and remove damaged or defective mitochondria. Mitochondrial fission occurs at sites of contact between the endoplasmic reticulum (ER) and mitochondria, and is dependent on the formation of mitochondria- and ER-associated actin filaments that drive the recruitment and activation of the fission GTPase DRP1. On the other hand, the role of mitochondria- and ER-associated actin filaments in mitochondrial fusion remains unknown. Here we show that preventing the formation of actin filaments on either mitochondria or the ER using organelle-targeted Disassembly-promoting, encodable Actin tools (DeActs) blocks both mitochondrial fission and fusion. We show that fusion but not fission is dependent on Arp2/3, and both fission and fusion are dependent on INF2 formin-dependent actin polymerization. Together, our work introduces a novel method for perturbing organelle-associated actin filaments, and demonstrates a previously unknown role for mitochondria- and ER-associated actin in mitochondrial fusion.

4.
Am J Respir Crit Care Med ; 207(3): 323-335, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36191258

ABSTRACT

Rationale: Obstructive sleep apnea (OSA)-induced endothelial cell (EC) dysfunction contributes to OSA-related cardiovascular sequelae. The mechanistic basis of endothelial impairment by OSA is unclear. Objectives: The goals of this study were to identify the mechanism of OSA-induced EC dysfunction and explore the potential therapies for OSA-accelerated cardiovascular disease. Methods: The experimental methods include data mining, bioinformatics, EC functional analyses, OSA mouse models, and assessment of OSA human subjects. Measurements and Main Results: Using mined microRNA sequencing data, we found that microRNA 210 (miR-210) conferred the greatest induction by intermittent hypoxia in ECs. Consistently, the serum concentration of miR-210 was higher in individuals with OSA from two independent cohorts. Importantly, miR-210 concentration was positively correlated with the apnea-hypopnea index. RNA sequencing data collected from ECs transfected with miR-210 or treated with OSA serum showed a set of genes commonly altered by miR-210 and OSA serum, which are largely involved in mitochondrion-related pathways. ECs transfected with miR-210 or treated with OSA serum showed reduced [Formula: see text]o2 rate, mitochondrial membrane potential, and DNA abundance. Mechanistically, intermittent hypoxia-induced SREBP2 (sterol regulatory element-binding protein 2) bound to the promoter region of miR-210, which in turn inhibited the iron-sulfur cluster assembly enzyme and led to mitochondrial dysfunction. Moreover, the SREBP2 inhibitor betulin alleviated intermittent hypoxia-increased systolic blood pressure in the OSA mouse model. Conclusions: These results identify an axis involving SREBP2, miR-210, and mitochondrial dysfunction, representing a new mechanistic link between OSA and EC dysfunction that may have important implications for treating and preventing OSA-related cardiovascular sequelae.


Subject(s)
Cardiovascular Diseases , MicroRNAs , Sleep Apnea, Obstructive , Vascular Diseases , Animals , Mice , Humans , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/genetics , Hypoxia/genetics , MicroRNAs/genetics
6.
Nat Methods ; 18(4): 406-416, 2021 04.
Article in English | MEDLINE | ID: mdl-33686300

ABSTRACT

Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a 'crappifier' that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a 'multi-frame' PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org.


Subject(s)
Deep Learning , Algorithms , Microscopy, Electron/methods , Signal-To-Noise Ratio
7.
Front Cell Dev Biol ; 9: 624823, 2021.
Article in English | MEDLINE | ID: mdl-33598463

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.

8.
bioRxiv ; 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33300001

ABSTRACT

Coronavirus disease 2019 (COVID-19) includes the cardiovascular complications in addition to respiratory disease. SARS-CoV-2 infection impairs endothelial function and induces vascular inflammation, leading to endotheliitis. SARS-CoV-2 infection relies on the binding of Spike glycoprotein (S protein) to angiotensin converting enzyme 2 (ACE2) in the host cells. We show here that S protein alone can damage vascular endothelial cells (ECs) in vitro and in vivo, manifested by impaired mitochondrial function, decreased ACE2 expression and eNOS activity, and increased glycolysis. The underlying mechanism involves S protein downregulation of AMPK and upregulation of MDM2, causing ACE2 destabilization. Thus, the S protein-exerted vascular endothelial damage via ACE2 downregulation overrides the decreased virus infectivity.

9.
Nat Methods ; 17(9): 917-921, 2020 09.
Article in English | MEDLINE | ID: mdl-32778832

ABSTRACT

The actin cytoskeleton plays multiple critical roles in cells, from cell migration to organelle dynamics. The small and transient actin structures regulating organelle dynamics are challenging to detect with fluorescence microscopy, making it difficult to determine whether actin filaments are directly associated with specific membranes. To address these limitations, we developed fluorescent-protein-tagged actin nanobodies, termed 'actin chromobodies' (ACs), targeted to organelle membranes to enable high-resolution imaging of sub-organellar actin dynamics.


Subject(s)
Actin Cytoskeleton/physiology , Optical Imaging/methods , Cell Line , Cytoskeleton , Fluorescence Recovery After Photobleaching , Fluorescent Antibody Technique , Humans , Luminescent Proteins , Red Fluorescent Protein
10.
Invest Ophthalmol Vis Sci ; 60(14): 4811-4819, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31743939

ABSTRACT

Purpose: Cone rod dystrophy (CRD) is a group of inherited retinopathies characterized by the loss of cone and rod photoreceptor cells, which results in poor vision. This study aims to clinically and genetically characterize the segregating CRD phenotype in two large, consanguineous Pakistani families. Methods: Funduscopy, optical coherence tomography (OCT), electroretinography (ERG), color vision, and visual acuity assessments were performed to evaluate the retinal structure and function of the affected individuals. Exome sequencing was performed to identify the genetic cause of CRD. Furthermore, the mutation's effect was evaluated using purified, bacterially expressed ADP-ribosylation factor-like protein 3 (ARL3) and mammalian cells. Results: Fundus photography and OCT imaging demonstrated features that were consistent with CRD, including bull's eye macular lesions, macular atrophy, and central photoreceptor thinning. ERG analysis demonstrated moderate to severe reduction primarily of photopic responses in all affected individuals, and scotopic responses show reduction in two affected individuals. The exome sequencing revealed a novel homozygous variant (c.296G>T) in ARL3, which is predicted to substitute an evolutionarily conserved arginine with isoleucine within the encoded protein GTP-binding domain (R99I). The functional studies on the bacterial and heterologous mammalian cells revealed that the arginine at position 99 is essential for the stability of ARL3. Conclusions: Our study uncovers an additional CRD gene and assigns the CRD phenotype to a variant of ARL3. The results imply that cargo transportation in photoreceptors as mediated by the ARL3 pathway is essential for cone and rod cell survival and vision in humans.


Subject(s)
ADP-Ribosylation Factors/genetics , Cone-Rod Dystrophies/genetics , Genes, Recessive , Point Mutation , Adolescent , Adult , Animals , COS Cells , Child , Chlorocebus aethiops , Cone-Rod Dystrophies/pathology , Consanguinity , Electroretinography , Female , Gene Expression , HeLa Cells , Homozygote , Humans , Male , Ophthalmoscopy , Pedigree , Phenotype , Tomography, Optical Coherence , Visual Acuity , Exome Sequencing , Young Adult
11.
Mol Biol Cell ; 30(10): 1198-1213, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30865555

ABSTRACT

Mitochondria are essential and dynamic organelles undergoing constant fission and fusion. The primary players in mitochondrial morphology (MFN1/2, OPA1, DRP1) have been identified, but their mechanism(s) of regulation are still being elucidated. ARL2 is a regulatory GTPase that has previously been shown to play a role in the regulation of mitochondrial morphology. Here we demonstrate that ELMOD2, an ARL2 GTPase-activating protein (GAP), is necessary for ARL2 to promote mitochondrial elongation. We show that loss of ELMOD2 causes mitochondrial fragmentation and a lower rate of mitochondrial fusion, while ELMOD2 overexpression promotes mitochondrial tubulation and increases the rate of fusion in a mitofusin-dependent manner. We also show that a mutant of ELMOD2 lacking GAP activity is capable of promoting fusion, suggesting that ELMOD2 does not need GAP activity to influence mitochondrial morphology. Finally, we show that ELMOD2, ARL2, Mitofusins 1 and 2, Miros 1 and 2, and mitochondrial phospholipase D (mitoPLD) all localize to discrete, regularly spaced puncta along mitochondria. These results suggest that ELMOD2 is functioning as an effector downstream of ARL2 and upstream of the mitofusins to promote mitochondrial fusion. Our data provide insights into the pathway by which mitochondrial fusion is regulated in the cell.


Subject(s)
Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Mitochondrial Dynamics/physiology , Animals , COS Cells , Cell Line , Chlorocebus aethiops , GTP Phosphohydrolases/metabolism , Gene Knockout Techniques/methods , Humans , Membrane Fusion/physiology , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism
12.
Mol Biol Cell ; 29(19): 2303-2316, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30024290

ABSTRACT

Rods and rings (RRs) are large linear- or circular-shaped structures typically described as polymers of IMPDH (inosine monophosphate dehydrogenase). They have been observed across a wide variety of cell types and species and can be induced to form by inhibitors of IMPDH. RRs are thought to play a role in the regulation of de novo guanine nucleotide synthesis; however, the function and regulation of RRs is poorly understood. Here we show that the regulatory GTPase, ARL2, a subset of its binding partners, and several resident proteins at the endoplasmic reticulum (ER) also localize to RRs. We also have identified two new inducers of RR formation: AICAR and glucose deprivation. We demonstrate that RRs can be disassembled if guanine nucleotides can be generated by salvage synthesis regardless of the inducer. Finally, we show that there is an ordered addition of components as RRs mature, with IMPDH first forming aggregates, followed by ARL2, and only later calnexin, a marker of the ER. These findings suggest that RRs are considerably more complex than previously thought and that the function(s) of RRs may include involvement of a regulatory GTPase, its effectors, and potentially contacts with intracellular membranes.


Subject(s)
IMP Dehydrogenase/chemistry , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Carbon-Nitrogen Ligases/metabolism , Cell Line , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/ultrastructure , GTP-Binding Proteins/metabolism , Glucose/deficiency , Guanosine/pharmacology , Humans , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Kinetics , Lesch-Nyhan Syndrome/pathology , Mice , Mycophenolic Acid/pharmacology , Protein Transport , Ribonucleotides/pharmacology
13.
Biochem Biophys Res Commun ; 500(3): 777-782, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29679567

ABSTRACT

Krüppel-like factor 5 (KLF5) is a basic transcription factor that regulates diverse cellular processes during tumor development. Acetylation of KLF5 at lysine 369 (K369) reverses its function from promoting to suppressing cell proliferation and tumor growth. In this study, we examined the regulation of KLF5 by histone deacetylases in the prostate cancer cell line DU 145. While confirming the functions of HDAC1/2 in KLF5 deacetylation and the promotion of cell proliferation, we found that the knockdown of HDAC1/2 upregulated KLF5 protein but not KLF5 mRNA, and the increase in KLF5 protein level by silencing HDAC1/2 was at least in part due to decreased proteasomal degradation. Deacetylase activity was required for HDAC1/2-mediated KLF5 degradation, and mutation of KLF5 to an acetylation-mimicking form prevented its degradation, even though the mutation did not affect the binding of KLF5 with HDAC1/2. Mutation of K369 to arginine, which prevents acetylation, did not affect the binding of KLF5 to HDAC1 or the response of KLF5 to HDAC1/2-promoted degradation. These findings provide a novel mechanistic association between the acetylation status of KLF5 and its protein stability. They also suggest that maintaining KLF5 in a deacetylated form may be an important mechanism by which KLF5 and HDACs promote cell proliferation and tumor growth.


Subject(s)
Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Kruppel-Like Transcription Factors/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Acetylation , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Silencing , Humans , Kruppel-Like Transcription Factors/genetics , Lysine/metabolism , Protein Binding , Protein Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
Cell Logist ; 7(3): e1340104, 2017.
Article in English | MEDLINE | ID: mdl-28944094

ABSTRACT

Mitochondria are essential, dynamic organelles that regularly undergo both fusion and fission in response to cellular conditions, though mechanisms of the regulation of their dynamics are incompletely understood. We provide evidence that increased activity of the small GTPase ARL2 is strongly correlated with an increase in fusion, while loss of ARL2 activity results in a decreased rate of mitochondrial fusion. Strikingly, expression of activated ARL2 can partially restore the loss of fusion resulting from deletion of either mitofusin 1 (MFN1) or mitofusin 2 (MFN2), but not deletion of both. We only observe the full effects of ARL2 on mitochondrial fusion when it is present in the intermembrane space (IMS), as constructs driven to the matrix or prevented from entering mitochondria are essentially inactive in promoting fusion. Thus, ARL2 is the first regulatory (small) GTPase shown to act inside mitochondria or in the fusion pathway. Finally, using high-resolution, structured illumination microscopy (SIM), we find that ARL2 and mitofusin immunoreactivities present as punctate staining along mitochondria that share a spatial convergence in fluorescence signals. Thus, we propose that ARL2 plays a regulatory role in mitochondrial fusion, acting from the IMS and requiring at least one of the mitofusins in their canonical role in fusion of the outer membranes.

15.
PLoS One ; 12(4): e0175164, 2017.
Article in English | MEDLINE | ID: mdl-28380071

ABSTRACT

Mitochondria are essential, dynamic organelles that respond to a number of stressors with changes in morphology that are linked to several mitochondrial functions, though the mechanisms involved are poorly understood. We show that the levels of the regulatory GTPase ARL2 and its GAP, ELMOD2, are specifically increased at mitochondria in immortalized mouse embryo fibroblasts deleted for Mitofusin 2 (MFN2), but not MFN1. Elevated ARL2 and ELMOD2 in MEFs deleted for MFN2 could be reversed by re-introduction of MFN2, but only when the mitochondrial fragmentation in these MEFs was also reversed, demonstrating that reversal of elevated ARL2 and ELMOD2 requires the fusogenic activity of MFN2. Other stressors with links to mitochondrial morphology were investigated and several, including glucose or serum deprivation, also caused increases in ARL2 and ELMOD2. In contrast, a number of pharmacological inhibitors of energy metabolism caused increases in ARL2 without affecting ELMOD2 levels. Together we interpret these data as evidence of two ARL2-sensitive pathways in mitochondria, one affecting ATP levels that is independent of ELMOD2 and the other leading to mitochondrial fusion involving MFN2 that does involve ELMOD2.


Subject(s)
Cytoskeletal Proteins/metabolism , GTP Phosphohydrolases/physiology , GTP-Binding Proteins/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Animals , Gene Knockdown Techniques , Glucose/deficiency , Mice , Mitochondrial Dynamics/physiology
16.
Small GTPases ; 7(4): 188-196, 2016 10.
Article in English | MEDLINE | ID: mdl-27400436

ABSTRACT

ARL2 is among the most highly conserved proteins, predicted to be present in the last eukaryotic common ancestor, and ubiquitously expressed. Genetic screens in multiple model organisms identified ARL2, and its cytosolic binding partner cofactor D (TBCD), as important in tubulin folding and microtubule dynamics. Both ARL2 and TBCD also localize to centrosomes, making it difficult to dissect these effects. A growing body of evidence also has found roles for ARL2 inside mitochondria, as a regulator of mitochondrial fusion. Other studies have revealed roles for ARL2, in concert with its closest paralog ARL3, in the traffic of farnesylated cargos between membranes and specifically to cilia and photoreceptor cells. Details of each of these signaling processes continue to emerge. We summarize those data here and speculate about the potential for cross-talk or coordination of cell regulation, termed higher order signaling, based upon the use of a common GTPase in disparate cell functions.


Subject(s)
GTP-Binding Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitochondria/metabolism , Animals , Centrosome/metabolism , Cilia/metabolism , Humans , Mitochondrial Dynamics , Photoreceptor Cells/metabolism , Signal Transduction
17.
Microbiology (Reading) ; 162(4): 694-706, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26872910

ABSTRACT

Pyridoxal 5'-phosphate (PLP) is an essential cofactor for nearly 60 Escherichia coli enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life. Various pleiotropic phenotypes of the E. coli COG0325 (yggS) mutant have been reported, some of which were reproduced and extended in this study. Comparative genomic, genetic and metabolic analyses suggest that these phenotypes reflect an imbalance in PLP homeostasis. The E. coli yggS mutant accumulates the PLP precursor pyridoxine 5'-phosphate (PNP) and is sensitive to an excess of pyridoxine but not of pyridoxal. The pyridoxine toxicity phenotype is complemented by the expression of eukaryotic yggS orthologs. It is also suppressed by the presence of amino acids, specifically isoleucine, threonine and leucine, suggesting the PLP-dependent enzyme transaminase B (IlvE) is affected. These genetic results lay a foundation for future biochemical studies of the role of COG0325 proteins in PLP homeostasis.

18.
Cell Logist ; 6(4): e1247939, 2016.
Article in English | MEDLINE | ID: mdl-28042516

ABSTRACT

We describe the construction and uses of a series of plasmids for directing expression to varied levels of exogenous proteins targeted to the mitochondrial matrix or intermembrane space. We found that the level of protein expression achieved, the kinetics of expression and mitochondrial import, and half-life after import can each vary with the protein examined. These factors should be considered when directing localization of an exogenous protein to mitochondria for rescue, proteomics, or other approaches. We describe the construction of a collection of plasmids for varied expression of proteins targeted to the mitochondrial matrix or intermembrane space, using previously defined targeting sequences and strength CMV promoters. The limited size of these compartments makes them particularly vulnerable to artifacts from over-expression. We found that different proteins display different kinetics of expression and import that should be considered when analyzing results from this approach. Finally, this collection of plasmids has been deposited in the Addgene plasmid repository to facilitate the ready access and use of these tools.

SELECTION OF CITATIONS
SEARCH DETAIL
...