Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 202(6): 537-50, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12846475

ABSTRACT

The conus (bulbo-ventricular) valves of teleosts perform a key function in the control of blood backflow during ventricular diastole. However, the structural characteristics of these valves are almost unknown. This paper presents a systematic anatomical, histological and structural study of the conus valves of the adult gilthead seabream (Sparus auratus). S. auratus shows two major left and right valves consisting of the leaflet and the supporting sinus. Each valvar leaflet can be divided into a stout proximal body and a flap-like distal region. The proximal body is structured into three layers: a luminal fibrosa, a dense cellular core and a parietal fibrosa. The luminal fibrosa is a collagenous structure extending the entire length of the leaflet, while the parietal fibrosa is restricted to the most proximal area. The dense cellular core consists of fibroblastic cells and a matrix rich in glycoconjugates, collagen and elastin. The histochemical and structural data suggest that the luminal fibrosa bears most of the force associated with valvar closure, while the cellular core acts as a cushion dampening vibrations and absorbing the elastic recoil. The sinus wall is a fibrous layer which shows proximal-distal differences in thickness. It also shows compositional differences that can be related to mechanical function. We describe the presence of a fibrous cylinder formed by the sinus wall, the fibrous interleaflet triangles and the fibrous layer that covers the inner surface of the conus myocardium. This fibrous cylinder constitutes the structural nexus between the ventricle, the conus and the bulbus arteriosus, provides support for the conus valves and separates the valvar complex from the surrounding tissues. The structure of the conus valves in S. auratus is different from that found in other vertebrates. Anatomical similarities between the conus valves and the mammalian arterial valves are emphasized. Each phyletic group appears to have developed specific structures in order to perform similar functions.


Subject(s)
Heart Valves/anatomy & histology , Sea Bream/anatomy & histology , Animals , Collagen/analysis , Elastin/analysis , Extracellular Matrix/ultrastructure , Female , Heart Valves/metabolism , Heart Valves/ultrastructure , Histocytochemistry , Immunohistochemistry , Lectins , Male , Mammals/anatomy & histology , Microscopy, Electron , Microscopy, Electron, Scanning , Pulmonary Valve/anatomy & histology , Sea Bream/metabolism
2.
J Anat ; 201(5): 395-404, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12448774

ABSTRACT

This paper reports on the presence of the conus arteriosus in the heart of the adult gilthead seabream, Sparus auratus (Perciformes, Teleostei). The junctional region between the single ventricle and the bulbus arteriosus has been studied by conventional light microscopy, and by scanning and transmission electron microscopy. In addition, fluorescent phalloidin and antibodies against the muscle myosin heavy chains, laminin and collagen type IV have been used. The conus arteriosus is a distinct muscular segment interposed between the ventricle and the bulbus arteriosus. It is clearly different from the bulbus arteriosus due to its myocardial nature. It can also be distinguished from the ventricular myocardium because: (1) it has a conus shape; (2) it is formed by compact, well-vascularized myocardium; (3) it is surrounded on its inner and outer faces by fibrous layers rich in collagen and elastin; (4) it constitutes the anatomical support of the so-termed conus valves; (5) it shows intense staining for laminin and type-IV collagen; and (6) the myocardial cells located close to the inner fibrous layer are helicoidally arranged. By contrast, the ventricular myocardium is highly trabecular, lacks a compacta, shows no vessels, and presents barely detectable amounts of laminin and collagen type IV. The presence of a distinct conus arteriosus in the heart of an evolutionary advanced teleost species indicates that the conus is not a vestigial segment from the evolutionary or embryological points of view. The characteristic spatial arrangement of the conus myocytes strongly suggests that the conus is implicated in the mechanical performance of the conus valves.


Subject(s)
Heart/anatomy & histology , Sea Bream/anatomy & histology , Animals , Collagen Type IV/analysis , Female , Histocytochemistry/methods , Immunohistochemistry/methods , Laminin/analysis , Male , Microscopy, Confocal , Microscopy, Electron , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...