Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microsurgery ; 22(7): 311-5, 2002.
Article in English | MEDLINE | ID: mdl-12404350

ABSTRACT

The bridging of nerve gaps is still one of the major problems in peripheral nerve surgery. The present experiment describes our attempt to engineer different biologic nerve grafts in a rat sciatic nerve model: cultured isogenic Schwann cells were implanted into 2-cm autologous acellular nerve grafts or autologous predegenerated nerve grafts. Autologous nerve grafts and predegenerated or acellular nerve grafts without implanted Schwann cells served as controls. The regenerated nerves were assessed histologically and morphometrically after 6 weeks. Predegenerated grafts showed results superior in regard to axon count and histologic appearance in comparison to standard grafts and acellular grafts. The acellular nerve grafts showed the worst histologic picture, but axon counts were in the range of standard grafts. The implantation of Schwann cells did not yield significant improvements in any group. In conclusion, the status of activation of Schwann cells and the stadium of Wallerian degeneration in a nerve graft might be key factors for regeneration, rather than total number of Schwann cells. Predegenerated nerve grafts are therefore superior to standard grafts in the rat model. Acellular grafts are able to bridge nerve gaps of up to 2 cm in the rat model, but even the addition of cultivated Schwann cells did not lead to results as good as in the group with autologous nerve grafts.


Subject(s)
Nerve Regeneration/physiology , Schwann Cells , Tissue Engineering/methods , Animals , Cells, Cultured , Female , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...