Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 12(43): 14596-608, 2010 Nov 21.
Article in English | MEDLINE | ID: mdl-20938560

ABSTRACT

Multilayer samples of the type (YSZ|Sc2O3) × n with layer thicknesses between 8 nm (n=100) and 250 nm (n=5) were prepared on (0001) sapphire substrates by pulsed laser deposition (PLD). The samples were characterised using X-ray diffraction (XRD), scanning electron microscopy (HRSEM) and transmission electron microscopy (TEM/HRTEM, SAED (selected-area electron diffraction) and quantitative EELS (electron energy-loss spectroscopy)). The polycrystalline layers show a columnar microstructure, which is typical for the used preparation technique. The layers are highly textured and only one axial orientation relation is found between yttria-stabilised zirconia (YSZ), scandium oxide and the substrate: (0001) Al2O3‖(111) Sc2O3‖(111) YSZ. A preferred orientation relationship also exists for the azimuthal rotation of the crystallites, which was demonstrated by SAED, XRD pole figure measurements and fast Fourier transformation (FFT) of HRTEM micrographs. The interfaces between YSZ, Sc2O3 and the substrate are sharp and do not contain diffuse transition regions. Dislocations appear not to be arranged in regular arrays. With increasing interface density (thinner individual layers in the multilayer), the conductivity of the multilayers decreases. We relate this to the negative nominal misfit present at the YSZ|Sc2O3 interfaces (compressive stress in YSZ at the phase boundaries). This observation agrees well with the previously investigated case of YSZ|Y2O3 (A. Peters et al., Phys. Chem. Chem. Phys., 2008, 10, 4623), where tensile misfit strain was present in YSZ at the phase boundaries, leading to a conductivity increase.

SELECTION OF CITATIONS
SEARCH DETAIL
...